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A. Objective: The goal of this research is to develop new and better digital communi- 

cation systems using wavelets and multirate filterbanks, which include new source and 

channel codings for antijamming applications. 

B. Main Research Accomplishments: We have made several research accomplish- 

ments as follows. 

(i). Malvar Wavelets on Arbitrary Shapes. We systematically constructed two dimen- 

sional Malvar wavelets defined on L-shaped regions, which can be used to construct 

two dimensional Malvar wavelets on arbitrary shapes. The application of such wavelets 

include the discrete cosine transform (DCT) image coding for arbitrary shaped objects 

such as the emerged video coding standard MPEG4. The two dimensional Malvar 

wavelets may be used the eliminate the block effects produced by the DCT compres- 

sion at high compression ratios. 

(ii). Ambiguity Resistant Precoders for IS I Mitigation Without Channel Information. 

We developed new precoding schemes using multirate filterbanks, which are called 

ambiguity resistant precoders (ARP). With ARP, the ISI channel information is not 

necessary for the transmitter or the receiver to recover the information. We character- 

ized all ARP, which are some special families of matrix polynomials. Any ARP can be 

used to resist ISI, to also resist additive random errors optimal ARP were studied and 

characterized. 

(iii). A New System Identification Method. New channel identification using chirp 

signals and joint time-frequency analysis and synthesis was proposed, where the per- 

formance is superior to the conventional method at low SNR. 

(iv). Multiwavelet Transforms. A new prefiltering for discrete multiwavelet transforms, 

which has better energy compaction than other prefiltering, was obtained. 

(v). A family of new pulse shaping filters that are ISI free with the matched filtering 

and also ISI free wothout the matched filtering, was obtained, which has been recently 

extended by numerous researchers. 

(vi). A quantatitive SNR analysis for joint time-frequency analysis by introducing 

3dB SNR definition in the joint time-frequency plane was obtained. 

(vii). A frequency estimation method from the undersampled data with multiple 

frequencies was proposed. 

(viii). An optimal multiple pulse repetition frequency (PRF) design method was 

proposed. 



(ix). A new wavelet based watermarking was proposed. 

C. Significance: The results obtained through this project have advanced digital signal 

processing and its applications, in particular wavelets and filterbanks, in telecommu- 

nications, multimedia systems, and radar applications with some jamming resistance 

properties. 
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Multiple frequency detection in 
undersampled complex-valued waveforms 
with close multiple frequencies 

Guangcai Zhou and Xiang-Gen Xia 

Indexing terms: Signal processing. Frequency measurement 

The determination of multiple frequencies in undersampled 
waveforms is studied, where the multiple frequencies are close to 
each other. Given multiple undersampling rates, the maximal 
range of the detectable multiple frequencies is the least common 
multiple of these multiple rates under the assumption that these 
rates are larger than twice the maximal distance between the 
multiple frequencies. 

Introduction: A traditional method to detect the frequencies of a 
multiple frequency waveform Mt) is to sample Mt) at the Nyquist 
sampling rate and then to implement the discrete Fourier trans- 
form (DFT). The peaks in the DFT domain provide the frequen- 
cies of this waveform. However, when the maximal frequency in 
the waveform is very large, the sampling rate also needs to be very 
large. Recently, methods to detect a single frequency in an under- 
sampled real-valued waveform have appeared [1 - 4], A single fre- 
quency in a real-valued waveform actually corresponds to two 
symmetric frequencies in a complex-valued waveform, where their 
coefficients are complex conjugates of each other. Most recently, 
general multiple frequency detection in undersampled complex- 
valued waveforms is studied in [5]. Given L undersampling rates 
of a complex-valued waveform with K multiple frequencies with L 
> r\K. a range for the detectable frequencies is given in [5], which 
is the minimum of the least common multiples of all possible n. 
different rates in the L undersampling rates. As mentioned in [5], 
this range may not be optimal, in particular when some prior 
information on the multiple frequencies is known. It should be 
noted that, the larger the range of the detectable multiple frequen- 
cies, the better the sampling efficiency, when the multiple sampling 
rates are given. The main idea in the above method is the imple- 
mentation of multiple DFTs of the undersampled waveforms and 
each DFT gives a set of residues of the multiple frequencies mod- 
ulo the sampling rates. Then, the (generalised) Chinese remainder 
theorem (CRT) is used in the determination of these multiple fre- 
quencies. 

In this Letter, we study the case when the multiple frequencies 
in a complex-valued waveform are assumed in a priori to be close 
to each other within a distance W. Given L undersampling rates, 
each of wliich is > 2 W. we prove that the maximal range for the 
detectable multiple frequencies is the least common multiple (1cm) 
of these sampling rates. 

Uniqueness of multiple frequency determination: Without loss of 
generality,   the  multiple  frequencies  in  a  waveform  Mt)  are 
assumed /. /, fK with f < f < - < U The complex-valued 
waveform Mt) is represented by 

x(f) = £.4*e2*J'" 
*=t 

where AL. k = 1  K. are nonzero coefficients. Let m, be one 

\ 1/ L-I 

(1) 

We first consider the single frequency case. In this case Mt) = 
Ar''>' and .x„\n] = A <-'""" -'. Lei/, = n,m: + r„ 0 < r, < m, - I. 
i.e. r, = ft (mod/»/,), then the m, point DFT of .v.J«]. 0 < n < m, - 
I. is 

DFTmiUm![ii)) = Al*a--rl)       0<A<m,-l   (2) 

This means that the residue r, - / mod m, can be detected from 
the m, point DFT of xm> [n]. Now. let m, mL be other under- 
sampled rates and 1cm! m,. m. mt \ be the lem of the integers in 
the set {m; mL\. By the CRT we have 

mL\. then/ can be uniquely 
; / (mod m,) using the above 

Lenmxa 1: If/ < lem\m,. ni:. . 
determined from the residues r, 
undersampled DFTs. 

We now consider the multiple frequency case. Let rkl = / mod 
mh Then, the m, point DFT of .t„((n]. 0 < n < m, - 1 is 

A 

DFTm,(xmi[n]) = Yl
AicS(i-rkl)   0 < « < m, - 1 

1<1<L       (3) 

From this representation, we see that, without the knowledge of 
amplitudes (it is usually impossible, for example, if all of the 
nonzero amplitudes are equal), generally we cannot match the 
peaks and the residues precisely (see example in Section 3). How- 
ever, if we know that ru is the residue of/ modulo m, for / = 1, 2, 
.... L, i.e. rk, =/ mod m, and/ is upper bounded by lemfw  
mL), then, by Lemma I. we can determine the frequencies/ fK 

uniquely. In conclusion, we have the following lemma. 

Lemma 2: If max{/; fK} < lcm{m mL) and we know the 
residue rkl off modulo m, precisely for 1 < / < L and 1 < k £ K, 
then we can determine/ ...,/* uniquely. 

If we only know that the set {rih k = 1. ...K], is the set of all 
residues of/, 1 < k < K modulo m, for / = 1, 2 L in general it 
is impossible to determine which one in the set is the residue of/ 
and therefore in general it is impossible to determine the multiple 
frequencies /. It is possible, however, if some prior information 
about the multiple frequencies/ is known, which is the goal of the 
rest of this Letter. 

Without loss of generality, we may assume that/ </ < ... <fK- 
Let W= naxlili/iK\f,-f) = fK -/. The undersampling rates are 
chosen m mL such that min{m mL] > IW. Then we have 
the following lemma. 

Lemma 3: Under the above condition on m, and /, 1 < / < L, 1 < 
k < JC the residue ru off modulo m, is uniquely determined by the 
set {r„ ra) for 1 < / < L and 1 < k < K. 

Proof: Since min{m, mL) > 2W. max{[/; -/}) < Wand/ 
are all distinct, it is not hard to see that the elements in the set {ru, 
.... rD) are different from each other. Let {r,„ .... ru) = {a,,.., a*} 
with a, < a, < ... < a». By the following representation 

/t = ru + ki mi 

J2 — t~2l + ^2m( 
(4) 

> /A = fKt + ksmi 
and the facts that/* -/ < Wand m, > 2W, we have k, < k2 < ..., 
< kK and kK - k, = 0 or 1. If kK = k„ then r„ < r:/ < ... < rB and r„ 
- r„ < W. If k, =k, = ... = kn k,., = ... = kK = fc, + 1 for some / € 
{1.2 AT-1}, then: 

fi=ru + kxmi f, = rll+klml (5) 

and 

/,+i = r(l+1)/ + (fci + l)m, /A- = rKi + Oi + l)m( (6) 

By eqn. 5, we have r„ < rv < ... < r,, and ra - ru < W. By eqn. 6, 
we have /■,„„, < /■„_,„ < ... < r„ and r„ - /•„.,„ <, W. Furthermore ru 

- r„ = m, - (fK -/) > W. Hence, we can determine the values of 
rlh ..., r„ uniquely according to the following law. if a* - a, < W, 
then we have r„ = a, ru = aK. If a,., - a, > W, for some i, 1 <, 
i < K-\ then r„ = OL. r,K.lu - aK, r,^.„, = a , r„ = a,. 

/-/ r/^rn/'Miii^r i r*i 



Therelore. in all case we can determine ihe rcsiduo umqua) 
Combining the above lemmas, we have obtained the following 

main result. —, 

Theorem /• Assume complex valued waveform \V\ contains K dif- 
ferent frequencies /, for 1 < A. < A'. Let m, I < / < L be sampling 
rates in the undersampled versions v,,Jn] of Mt) in eqn. 1 with w, 
replaced bv m,. 1 < l< L. Then the A'frequencies / for 1 < A < A 
can be uniquely determined bv using the m, point DFT of xm\n\ 
for 1 < l< L if max'/, Al < lem{w, »itl and min',m  
mL\ > 2max,<,<,. k\f,-fi- 

ll is clear that the range of/;, lemjm, mc|. given m,. .... m, 
is the maximal one. The difference between the above result and 
the result in [5] is that the knowledge of minjm, m,} > 2max,, 

<Jf,-J}K needed in this Letter, while no knowledge is neces- 
sary'in the result in [5] as mentioned in the introduction. 

Multiple frequency determination algorithm: For simplicity, we 
assume m, mL are pairwise coprimes. We assume the condi- 
tions in theorem 1 hold. Now. we give the concrete determination 
algorithm as follows: 

Step 1. Sample the waveform Mt) with the sampling rates m, to 
obtain xjn] for 1 < / < L. 
Step 2. Implement the m, point DFT of xjn], 0 < n < m, - 1. to 
detect the set S, = {a,, a„} of A peaks in the DFT domain for 

1 < / < L 
Step 3. For each peak set {a aK) = S, with a, < a, < ... < a*. 
if at - a, < W, then we have r„ = a ru = a*. If a,., - a, > W 
and a, - a, < W. for some ;, 1 < »' < A - 1 then r„ - a,. r,K_u 

= at. r„.,.„, = a, r„ = a,. Hence we can determine these resi- 
dues rt, of/ uniquely. 
Step 4. By Step 3 we know: 

fk = rk,    (mod mi)        k = 1 A'    ' = 1 L    (7) 

We define: 
L if 

(8) M 
M = Y[mi    and   .1/, = ^ 

;=i 

Since m, and M are coprime. there are solutions A', of 

SiMi = l    (mod m,) (9) 

With these .V. the solution fk is 

A = r*,.V,.V, + ■ • ■ + rkL.\LML    (mod M)       (10) 
The above closed formulas for/, are the solutions of/». For the 
CRT involved in step 4. see, for example. [7]. 

Examples In this Section, we see a simple example. Consider a 
signal with three frequencies, where their differences are at most 
10Hz. ie W = 10. We sample this signal with frequencies m, - 
->7Hz. m. = 28 Hz. m, = 29 Hz. Hence if the largest frequency of 
this signal is less than 27 x 28 x 29 = 21924Hz. by theorem 1. we 
can uniquelv determine these three frequencies. Let/, = 20008Hz. 
/. = 20013Hz. and/, = 20017Hz.' * 
' For the sampling rate /w, = 27 Hi we obtain the DFT peak val- 

ues at {1. 6. 10|. For the sampling rate m: - 28Hz. we obtain the 
DFT peak values at {16. 21. 2%\ For the sampling rate m, = 
29 Hz. we obtain the DFT peak palues at ,{3, 7. 27}. Then, from 
step 3 we have [ 

Hi = 1     r2i = 6|   r31 = 10 

rn = 16   rK==^l   r32=25 

r13 = 27   r23 = 3    r33.= 7 

By step 4, the multiple frequencies can be determined. 
If we take another sample with rate m, = 31. then the signal 

with highest frequency < 679644 rjz can be uniquely determined. 

Conclusion: In this Letter, we studied the detection of multiple fre- 
quencies in undersampled compleV-valued" waveforms, where the 
multiple frequencies are close to each other. Given the undersam- 
pling rates, the maximal range of the detectable multiple frequen- 
cies was given, that is the tern of the undersampling rates, when all 
these rates are larger than twice the maximal distance between the 
multiple frequencies. The main advantage of undersampling is the 
hardware cost reduction [6]. 
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Performance of adaptive multisensor 
decision feedback equaliser for time-varying 
frequency selective radio channels 

S. Buljore, J.F. Diouris and J. Saillard 

Indexing terms: Adaptive equalisers. Radio applications 

A multisensor decision feedback equaliser based on the minimum 
mean squared error (MMSE) criterion is studied. The superiority 
of the performance of the multisensor equaliser is shown by 
simulation of a whole communication system in which the 
adaptive equaliser is incorporated. The recursive least squares 
(RLS) algorithm is used to update the coefficients. From the 
results obtained for a time-varying urban terrain channel model, 
the extremely interesting tracking capability of the multisensor 
equaliser is shown. 

Introduction: Frequency selective and time-varying radio channels 
considerably degrade the performance of OSM-type mobile digital 
communication systems [1]. In addition to equalisation, the reduc- 
tion in the variation of the signal to noise ratio (SNR) due to time 
variation of the radio channels at the receiver using diversity tech- 
niques is a desirable asset. This Letter presents a multisensor deci- 
sion feedback equaliser (DFE) implemented with the recursive 
least squares algorithm for a time-varying typical urban channel. 
A Monte Carlo simulation of the digital link incorporating the 
multisensor equaliser is carried out. The channel model considered 
is given by the GSM recommendations for a typical urban (TU) 
environment [2]. The superiority of the performance of the multi- 
sensor equaliser to combat intersymbol interference (ISI) and fad- 
ing is shown. Finally, conclusions on the improved performance 
and the very interesting tracking ability of the multisensor DFE 
are drawn. 

System and channel model: The scheme of the baseband system 
simulation is illustrated in Fig. 1. The bit sequences are transmit- 
ted using a DQPSK modulation scheme through a square root 
raised cosine filter. The channel model used is the typical urban 
channel given in Table 1. The receiver consists of another square 
root raised cosine filter, an adaptive single/multi-sensor equaliser. 
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System Identification Using Chirp Signals and Time- 
Variant Filters in the Joint Time-Frequency Domain 

Xiang-Gen Xia, Member, IEEE 

Abstract—In this paper, we propose a novel method to iden- 
tify an unknown linear time invariant (LIT) system in low 
signal-to-noise ratio (SNR) environment The method is based 
on transmitting chirp signals for the transmitter and using linear 
time-variant filters in the joint time-frequency (TF) domain for 
the receiver to reduce noise before identification. Due to the TF 
localization property of chirp signals, a large amount of additive 
white noise can be reduced, and therefore, SNR before iden- 
tification can be significantly increased. This, however, cannot 
be achieved in the conventional methods, where pseudo-random 
signals are used, and therefore, noise reduction techniques do not 
apply. Our simulation results indicate that the method proposed 
in this paper outperforms the conventional methods significantly 
in low SNR environment This paper provides a good application 
of time-frequency analysis and synthesis. 

I. INTRODUCTION 

THE SYSTEM identification problem is a classical and 
important problem in signal processing, which has appli- 

cations in many fields including channel estimation in wireless 
communications. There have been extensive studies on this 
problem; see, for example, [2], [3], [28], [31], and [32]. The 
problem can be stated as 

y[n] = '^h[n-k]x[k] + v[n] (1.1) 
k 

where 
x[k]  transmitted signal; 
h[n]  impulse response of a linear time invariant (LTI) 

system (or channel); 
v[n]  additive noise; 
y[n]  received signal. 

The problem is to identify the LTI system transfer function 
H(UJ) of h[n] given the input and the output signals x[n] and 
y[n]. 

The conventional method for solving the above problem is 
the least-squared solution method that is equal to the cross- 
spectral method in stationary cases, i.e., the system transfer 
function H(ui) can be estimated by 

H(u) = 
Sxy{u)) 

Sxx(w) 
(1-2) 
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where Sxy(u) is the cross-spectrum of x[n] and y[n], and 
Sxx(w) is the autospectrum of x[n]. When the additive noise 
v[n] in (1.1) is a zero-mean Gaussian process and statistically 
independent of the input signal x[n], the estimate in (1.2) is 
asymptotically unbiased, and its error variance approaches the 
Cramer-Rao lower bound that is proportional to the variance 
of the additive noise v[ri\. Clearly, the performance is limited 
by this noise variance, or the signal-to-noise ratio (SNR). 
When this SNR is low, the performance of the estimate in 
(1.2) is poor. Since the autospectrum of the input signal x[n] 
is in the denominator in the estimate (1.2), the input signal 
is, in general, chosen as a pseudo-random signal with flat 
spectrum [4]. With these kinds of input signals, noise reduction 
techniques before system identification do not apply. As a 
matter of fact, any traditional noise reduction technique, such 
as any Fourier transform technique, does not perform well 
for wideband signals. This implies that it is not possible to 
increase the SNR or the performance of the estimate (1.2) by 
transmitting a pseudo random signal and using the conven- 
tional Fourier noise reduction techniques. Several questions 
arise here: 

i) Can we transmit other wideband signals, such as chirp 
signals, instead of pseudo random signals? 

ii) If so, can we take the advantage of these wideband 
signals and reduce the noise v[n] in (1.1)? 

iii) If so, can we improve the performance of the estimate 
(1.2) after denoising? 

The aim of this paper is to positively answer these questions. 
The main idea is the following. Chirp-type signals are trans- 
mitted, which have wideband characteristics in the frequency 
domain but concentrate in the joint time-frequency domain. 
Chirp-type signals are used quite often, such as in radar and 
in FM in communications systems. The TF concentration 
property usually holds after an LTI system (this will be seen 
later). Since a joint TF distribution usually spreads noises and 
localizes signals, in particular chirps, the receiver may use a 
TF analysis technique (see, for example, [5]-[27]) to map the 
received signal y[n\ from the time domain into the joint time- 
frequency domain. In this way, the SNR can be significantly 
increased in the joint TF domain, and the receiver may be 
able to see patterns in the joint TF plane and therefore reduce 
the noise by filtering in the joint TF domain. This filtering 
is basically a time-variant filtering. We use this name in the 
rest of this paper. The model (1.1) after a time-variant filter 

1053-587X/97S 10.00 © 1997 IEEE 
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becomes 

y[n] = ^ h[n - k)x[k)'+ v[n] (1.3) 

where v[n] is the new noise after the filtering. 
The time-variant filter used in this paper is based on the 

discrete Gabor transforms, which was studied in [5]-[7]. For 
chirp-type signals, about 13 dB SNR is increased consistently 
with this filter in [6]. When the original SNR in (1.1) is not 
too low, say, for example, above -1 dB, the new SNR in (1.3) 
may reach a significant high level so that the estimate of H(u>) 
from y[n] and x[n] is accurate enough for many applications. 
In this paper, both denoising with several mask design methods 
and system identification simulations are performed. These 
simulations show that a much better performance over the 
conventional method can be achieved. 

It should be pointed out that the optimal training signal 
design for dynamic system identification has a long history 
dating back over 20 years. The design methods are traditionally 
based on the minimization of the Cramer-Rao bound for 
the system parameter estimation in either the time or the 
frequency domain (see, for example, [28]-[32]) but not in 
the joint TF domain. The aim of this paper is, however, not 
focused on the optimal training signal design, although it is 
a very interesting topic. Denoising before identification using 
nonredundant discrete wavelet transform was studied in [33] 
for chemical process control applications. 

This paper is organized as follows. In Section n, we briefly 
review discrete Gabor transforms and the iterative time-variant 
filtering studied in [5]-[7]. In Section m, we use the time- 
variant filter studied in Section II to reduce additive white 
Gaussian noise for a received signal. The filtering problem in 
this paper has its own characteristics due to the fact that the 
transmitter and the receiver know the transmitted chirp signal 
x[n], and therefore, its TF information is known a priori. This 
TF information can be used in designing a mask in the time- 
variant filtering. In Section IV, we utilize the conventional 
system identification method, i.e., the cross-spectral method 
(1.2), after the denoising in Section m. In Section V, we 
conclude this paper by addressing some possibilities for further 
improvements. 

n. DISCRETE GABOR TRANSFORM 

AND TIME-VARIANT FILTERING 

There have been many TF analysis techniques, such as 
Wigner-Ville distributions in the Cohen's class, spectrogram 
(short-time Fourier transform or Gabor transform or DFT 
filterbanks), and scalogram (wavelets) (see, for example, [5], 
[23]-[27]). Some of them, such as bilinear TF distributions, 
have high resolution but have crossterms for multicomponent 
signals. Some of them, such as linear techniques (for exam- 
ple, Gabor transforms and wavelet transforms), do not have 
crossterms for multicomponent signals but may not have very 
high resolutions. Since, in this paper, we deal with a linear 
combination (or a linear system) of various chirp signals, it is 
important for a TF analysis technique not to have crossterms 
while it should also have a good resolution. This leads us to 

consider Gabor transforms. In this section, we first review the 
discrete Gabor transforms (DGT). 

Since oversampled DGT is more robust for noise, it is 
usually used in noise reduction applications. However, a 
disadvantage for oversampled DGT is that it is not an onto 
mapping. In other words, not every signal S[k, I] in the DGT 
transform domain corresponds to a time domain signal s[n] 
so that the DGT of s[n] is exactly equal to S[k,l]. This 
causes problems in filtering in the DGT transform domain, 
which is that the filtered signal in the DGT transform domain 
may not correspond to any time domain signal as shown 
in Fig. 1. An intuitive solution for this problem is to take 
the least-squared error (LSE) solution in the time domain 
(see, for example, [8]-[13]). The LSE, however, usually does 
not have a desired TF characteristics in the DGT transform 
domain. When a signal is very long, the computational load 
for the LSE solution is significantly high because of the 
inverse matrix computation. Based on these observations, 
an iterative algorithm was proposed in [5]-[7]. Conditions 
on the convergence, properties of the limit signals, and the 
relationship between the LSE solutions and solutions from 
the iterative algorithms were obtained in [6] and [7], where 
a significant improvement over the LSE solution was also 
shown. The second part of this section is to briefly review 
some of these results. 

A. Discrete Gabor Transform 

We first review some basics on the DGT, which is necessary 
for this paper. For more about the discrete short-time Fourier 
transform, see [14], for more about DFT filterbanks, see [15], 
and for more about the DGT, see, for example, [16]-[22]. Let a 
signal s[k], a synthesis window function h[n], and an analysis 
window function 7[n] be all periodic with same period L. Then 

M-1N-1 

«[*] =EE C'm,»Am,»(*] CD 
m=0 n=0 
L-l 

(2.2) 

(2.3) 
(2.4) 

Cm,n = £ 8[kh'mJk] 
fc=0 

hm,n[k}=h[k-mAM]W£ANh 

lm,n[k)=l[k-mAM}W^Nk 

and WL = exp(j"27r/L), j = Ver!- The coefficients Cm<n are 
called the DGT of the signal s[k], and the representation (2.1) 
is called the inverse DGT (TDGT) of the coefficients Cm,„. 
One condition on the analysis and synthesis window functions 
f[k] and h[k] obtained by Wexler and Raz is the identity1 

L-l 

Y^h[k + mN]W£nMh^[k} 
fc=0 

= 8[m]8[n],      0<m<AN -I,    0<n< AM - 1 
(2.5) 

'If we take the inverse discrete Fourier transform with respect to the 
parameter n at the both sides, the system (2.5) is the same as the one obtained 
in [14] when all convolutions are considered to be cyclic convolutions for 
finite length signals in [14]. 
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(a) TF of noise 

(b)TF of chirp 
signal 

(c) TF of 
signal 

+ noise 

Fig. 1.   TF transform illustration. 

where AM and AN are the time and the frequency sampling 
interval lengthes, and M and AT are the numbers of sampling 
points in the time and the frequency domains, respectively, 
M ■ AM = N ■ AN = L, MN > L (or AM AN < L). The 
critical sampling case is when M ■ N = AM ■ AN = L. The 
condition (2.5) on window functions h and 7 can be rewritten 
in matrix form as 

-HpxLTlxl = Mpxl (2.6) 

where the subscript m x n means the m by n matrix p = 
AM-AN,7txi = (7[0],7[l],"-,7[i-l])T, andMpxi = 
(1,0, • • •, 0)T and the element at the (mAM + n)th row and 
the fcth column in the matrix HpXL is 

h[k + mN]W[nMk,       0<m<AN-l 

0<n<AM -I,    0<k<L-l. 

In the critical sampling case and when HPXL has full rank, 
there is a unique solution for the analysis window function 
7[n]. In the oversampling case and when /fpXx, has full rank, 
there are infinite many solutions for the system (2.5). Among 
them, the minimum norm solution was given in [17] 

7lxi = H xL(HpxLH xL)    Mpxi (2.7) 

where * means the complex conjugate transpose. It was proved 
in [18]—[20] that the above minimum norm solution is also the 
most orthogonal-like solution, i.e., (a more general form was 
given in [22]) 

||7Lxi -/»Lx'ill = .       „ min ||7Lxi-/iLxi 
7LXI: HpXL~t'Lxl=lipxi 

(2.8) 

The LXJT and IDGT can be also represented in matrix forms. 
Let 

C = (Cofi, Co,i, • • •, CM-I^N-I) 

s = (s[0),s[l],---,s[L-l))T. 

The DGT can be represented by the MN x L matrix GMNXL 

with its (mN + n)th row and fcth column element 

7m,nW =7*[k - mAM)W£nANk,        0 < m < M - 1 

0<n<N-l,    0<k<L-l. 

The IDGT can be represented by the L x MN matrix HLXMN 

with its fcth row and (mN + n)th column element 

Am.n[Jb] = h[k - mAM]W£ANk,       0 < m < M - 1 

0<n<AT-i,    0<fc<L-l. 

Thus . 

C = GMNXLS   and   a = HLxMNC. (2.9) 

The condition (2.5) implies that 

HLXMNGMNXL = hxL (2.10) 

where ILXL is the L x L identity matrix. 

B. Iterative Time-Variant Filtering Algorithm 

We next want to briefly review the iterative time-variant 
filtering algorithm proposed in [5]-[7]. This algorithm is used 
later in the denoising for the system identification problem. 

The oversampling of the DGT adds redundancy, which 
is usually preferred for noise reduction applications. From 
(2.1H2.5), (2.9), and (2.10), one can see that an L- 
dimensional signal s is transformed into an MiV-dimensional 
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HLXMN/ 

W* 
Fig. 2.   Iterative time-varying filtering algorithm. 

signal C, and MN is greater than L due to the oversampling. 
Therefore, only a small set of MN-dimensional signals in the 
TF plane have their corresponding time waveforms with length 
L. Let DMNXMN denote the mask transform, specifically, a 
diagonal matrix with diagonal elements either 0 or 1. Let s 
be a signal with length L in the time domain. The first step 
in the time-variant filtering is to mask the TF transform of s 

C\ — DMNX.MNGMN-X.LS 

where DMSXMN masks a desired domain in the TF plane. 
Since the DGT GMNXL is a redundant transformation, the 
IDGT of CI,HLXMNCI may not fall in the mask. In other 
words, in general 

GUXXLHLXMNCI ^ DMNXMNGMNX.LHLX.MNGI 

(2.11) 

where MN > L, which is illustrated in Fig. 1(e). Notice that 
in the critical sampling case, i.e., MN = L, the inequality 
(2.11) becomes an equality. An intuitive method to reduce the 
difference between the right- and the left-hand sides of (2.11) 
is to mask the right-hand side of (2.11) again and repeat the 
procedure, which leads to the iterative algorithm 

(2.12) 

(2.13) 
(2.14) 

«o 
Ci + i = DMNXMNGMNXLSI 

SI+I= HLXMNGI+I,       1 = 0,1,2,' 

The above iterative algorithm is illustrated in Fig. 2. 
Before going to the convergence, let us see what the LSE is. 

Based on the definition, the LSE solution is the L x 1 vector 
i that minimizes 

\\GMNXLX — DMNXMNGMNXLS\\ 

= min \\GMNXLX - DMNXMNGMNXL'W-   (2.15) 

Then 

(
G

MNXLGMNXL) 
1
G\{NXLDMNXMNGMNXLS- 

(2.16) 

Clearly, when the signal length L is large, the inverse matrix 
computation is expensive. Although the error in (2.15) is min- 
imized, the DGT of the least-squared solution x may not fall 
in the mask DMNXMN- GMNXLX ^ DMNXMNGMNXL* 

when MN>L. 
The complexity for the iterative algorithm (2.12H214) is, 

however, low, which does not need to compute inverses of 
large size matrices. By considering the DGT and IDGT in 
(2.1H2.4), the computational complexity in (2.12M2.14) is 
proportional to the signal length multiplied by the window 
length, i.e., LLW- Notice that the complexity of directly 
computing the inverse matrices in (2.16) is proportional to L . 
Therefore, when the length of window functions h and 7 is 
much shorter than the length of the signal s, the computational 
complexity in the iterative algorithm (2.12H2-14) is much 
lower than the one for the least-squared solution in (2.16). 

We next want to list several related results on the above 
iterative algorithm obtained in [6] and [7], such as the conver- 
gence, the properties of the limit signals, and the relationship 
between this algorithm and the LSE solution. These results 
are based on the condition on the window functions h and 7 
obtained in [6] and [7]: 

AAT-l 

53 f'[lN + k]h[lN + k + mAM\ 
1=0 

AN-l 

=   53 h*[lN + k]j[lN + k + mAM]   (2.17) 
1=0 

for k = 0,1, ■ • •, N - 1 and m = 0,1, • • •, M - 1. 
Theorem 1: When the synthesis and the analysis window 

functions h[n] and 7[n] satisfy condition (2.17), the iterative 
algorithm (2.12H2.14) converges. 

There are two trivial cases where (2.17) holds. The first 
case is the orthogonal case h[n] = 7[n] for all integer n. The 
second case is the critical sampling case AM = N. Notice 
that the continuous Gabor transform is never orthogonal unless 
the window functions are badly localized in the frequency 
domain. This, however, is not the case for the DGT. The 
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original chirp time waveform <n] 

0 50        100       150      200      250      300      350      400       450      500 

original chirp Fourier spectrum IX(w)l in dB 

-3-2-1 0 1 2 3 

Fig. 3.   Transmitted signal x[n] and its Fourier spectrum A'(u>). 

most orthogonal-like solution was studied by Qian et al. in 
[18]-[20]. They showed that it is possible to have the analysis 
window function 7 very close to the synthesis window function 
h when h is truncated Gaussian. The error between h and 7 is 
less than 2 x 10"6 (see Fig. 4) while they are of unit energy, 
and therefore, the error is negligible. It was shown in [6] that 
the performance of the iterative algorithm strongly depends 
on (2.17). When this condition does not satisfy, the iterative 
algorithm may not converge. 

Theorem 2: Under (2.17), the DGT of the limit 5 of the 
iterative algorithm (2.12)—(2.14) falls in the mask DMNXMN* 

i.e. 

GMNXLS = DMNXMNGMNXLS. (2.18) 

The above results say that as long as (2.17) on the analysis 
and synthesis window functions is satisfied, the iterative 
algorithm converges, and the limit signal has the desired TF 
characteristics, i.e., its DGT falls in the desired mask. One 
might ask whether it violates the known fact that an image 
of a TF transform of a signal in the TF plane cannot be 
compactly supported. This is because a signal cannot be time- 
and bandlimited simultaneously. To answer this question, we 
first need to know that the above known fact is true for 
continuous TF transforms. Moreover, the proof of the fact is 
based on the marginal properties of TF transforms. It may not 
be true for discrete TF transforms. In other words, discrete TF 
transforms may have compact support [5]. 

Theorem 3: Under (2.17), the first iteration si of the it- 
erative algorithm (2.12H2.14) is equal to the least-squared 
solution in (2.16), i.e., s\ = x. 

With this result, one will see later that the iterative algorithm 
(2.12H2.14) improves the least-squared solution when the 
number of iterations increases, and meanwhile, one does not 
need to compute the inverse matrix in (2.16). 

m. DENOISING FOR RECEIVED 

SIGNALS THROUGH A NOISY CHANNEL 

In this section, we want to do noise reduction with the time- 
variant filter studied in Section II for received signals in a 
noisy channel. 

A. Some Parameters 

The signal length is randomly chosen as 500. The signal 
x[n] for the transmitter is 

x[n] = cos 
n+15 

150 
n = 0,1, ■••.499.     (3.1) 

The waveform and its Fourier transform X{ui) of the above 
signal x[n] are shown in Fig. 3. Notice that since the Fourier 
power spectrum |X(w)|2 will be used in the denominator in 
the system identification, it should be as far away from zero as 
possible. Since the noise-reduction performance of the time- 
variant filtering in Section II depends on the localization of 
the signal in the TF plane, the transmitted signal x[n] should 
be as concentrated in the joint time and frequency domain as 
possible. The synthesis and analysis window functions used in * 
this paper are shown in Fig. 4, where their lengthes are 256. 
The synthesis window function is just the Gaussian function 
and its analysis window function is the most orthogonal-like 
solution given in (2.7). Their difference and the difference 
between the left-hand side and the right-hand side of (2.17), 
i.e., the condition error, are also shown in Fig. 4. One can 
see that they almost satisfy (2.17). The time sampling interval 
length AM = 16 and the frequency sampling interval length 
AN = 2 in the discrete Gabor transform and its inverse in 
Section n. These parameters are used throughout the rest of 
this paper. The DGT of x[n] is shown in Fig. 5. The tail part 
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synthesis window h[n] 

2077 

100 200 

x10-« difference lh[n]-rFn]l 

300 

analysis window r[n] 

x10 

-2X 
200 

100 

100 200 

condition error 

Mi < 

10 

300 

100 200 300 k        0  0 m 

Fig. 4.   Synthesis and analysis window functions and the condition (2.17) test. 

20 

DGT of the chirp signal xfji] 

10 20 30 40 50 

Fig. 5.   Discrete Gabor transform of signal x[n]. 

of the DGT in Fig. 5 is because of the discrete calculation    x[n], and 
aliasing. 

In this paper, we use 20-tap LTI systems in our numerical 
examples, where the number 20 is just randomly chosen. The 
channel model is 

N-l 

y[n] = ^2 h[k]x[n -k] + v[n] (3.2) 
fc=o is considered to be the signal, x[n] is the transmitted signal 

where N = 20 in the following numerical examples, v[n] is an as in (3.1), y[n] is the received signal, and h[n] is an LTI 
additive white Gaussian noise and independent of the signal system (or channel) impulse response. The original SNR for 

N-l 

s[n] = ^2 h[k]x[n - k] (3.3) 
fc=0 
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LTI channel Fourier spectrum 

I I 

signal s[n] no1 adc5tive1noise   *° 
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relied signal]        «» 
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Fourier spectrum of s[n] 
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Fourier spectrum of fln]       4 

200 400 600 "01234 

Stt'oSSfnof«!:11 Channd Mnl- ^ S[nl and WCeived Signal y["] ^ ^ Fourier sPecmim' where «* SNR -4.5 dB for the additive 

DGT of received signal yfn] 

20 30 40 50 60 

Fig. 7.   Discrete Gabor transform of the received signal j/[n] in Fig. 6 with SNR = -4.5 dB. 

the received signal is calculated by 

10 log 10 

/ 499 \ 

'£i*Nr 
n=0 
499 

. X>MI 
\n=0 

time waveform y[n] with SNR = -4.5 dB and the signal s[n] 
without noise and their Fourier spectrum are shown in Fig. 6. 
The DGT of the received signal y[n] with -4.5 dB SNR is 
shown in Fig. 7. In Fig. 7, one is still able to see the chirp 
pattern in the joint time and frequency plane, although it is 
impossible in the time or the frequency domain alone in Fig. 6. 

B. Mask Design 

an exarn^chZ7*°^ ^^ *" ^^ ^ AS        ^ pattem in *' ** domain of *e ab™ «to* •[»] in an example, a channel Founer spectrum and received signal    (3.3) is similar to the one for the signal x[n) in Fig 5. This is 
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not only true for this particular example but is also the case for 
our numerous examples. The reason is due to the following 
analytic argument. 

Assume the chirp signal x[n]   =  exp(jcn') for some 
constants r > 2 and c £ 0. Then 

,[n] = 51 ft[fc]ar[n - fc] 

= ^/l[fc]exp(jc(n-fc)r) 

1=0 
r-l 

=*[n]y>[*]«pUcX>n'*r' 
fc \    «=o / 

which is dominated by the original chirp x[n] for finite tap 
LTI systems h[k}. It is because that the highest chirp order of 
s\n] r and the corresponding chirp rate are the same as those 
of i[n], whereas the chirp order for the above multiplier of 

x\n\ in s\n] 
r-l 

Jur-l 

k \     1=0 

is only r - 1. As a special case, when r = 2 

a[n] = x[n]G{2cn) 

where G(w) is the Fourier transform of the signal h[n]x[n] 

G{u>) = ^/i[fc]x[fc]exp(-j2cnfc). 
k 

When the channel h[n] has only a finite tap, the function G(w) 
is usually a smooth signal. 

Since the transmitted signal x\n) is known to both trans- 
mitter and the receiver, by the above property its pattern in 
the DGT domain may help in designing a mask in the DOl 
domain for filtering noise. This is exactly the motivation for 
the following design method of a mask DMNXMN m the 
iterative time-variant algorithm (2.12H2.14). The subscript 
MN x MN of the mask DMN*MN will be dropped from 
now on without causing confusion in understanding. 

1) Mask Design Procedure: 
Step 1) Implement the DGT Cm,„ of the transmitted signal 

Step 2) Threshold the DGT coefficients Cm,„ and have a 
mask Dx from Cm,n 

Dx(m ,     fl,   if 
n) = \0,   ot 

|C(m,n)| > to 
otherwise 

where t0 is a predesigned positive number that is 
called thresholding constant. 

Step 3) Implement Steps 1 and 2 for the received signal 
y[k], and design a mask Dy with thresholding 
constant t, from the DGT coefficients of y[n] with 
another predesigned constant 11 > 0. 

Step 4) The final mask is the product of Dx and Dy: D = 
DxDy. 

Since the DGT of the signal x[n] usually dominates the 
DGT of the signal s[n], the pattern in the DGT domain of 

the signal s[n] is usually in a close neighborhood of Ae 
pattern in the DGT domain of x[n]. Therefore, the mask Dx 

is usually designed so that it covers a relatively large area, 
i e the thresholding constant t0 in Step 2 is usually chosen 
not too large. Since the received signal y[n] is from a noisy 
channel, the resolution of its DGT pattern may be reduced, 
and therefore, the thresholding constant h in Step 3 is usually 
chosen to be not too small. Otherwise, the mask Dy will cover 
too much unwanted area. Let us see an example. The mask Dx 

from xfn], the mask Dy from y[n], their product D = DtVy, 
and the mask Ds from the true signal s[n] are, shown in 
Fig. 8, respectively. The SNR in this case is SNR - -1.4 
dB The thresholding constants in Steps 1-3 are t0 - «." 
and h = 0.15 • max(DGT(y)). It should be pointed out that 
the above mask design procedure may be improved by using 
more sophisticated designs. Possible improvements are 

i)    to find the optimal thresholding constants to and h by 
training a large number of signals and systems; 

ii)   to use more sophisticated statistical detection method 
in the DGT domain for the received signal y[n] instead 
of a simple thresholding in Step 3; 

iii)  to smooth the mask D = DXDV since the true mask D. 
is usually smooth due to the nature of a chirp signal, 
but Dy from the noisy signal y[n] may not be smooth. 
Some morphological operations, such as dilation, may 
be used to smooth the mask D. 

Another observation from our various numerical examples 
is that the mask Dx is the mean of the true mask Ds in terms 
of different LTI systems h[n]. 

C. Demising Experiments 
In this subsection, we want to implement the time-variant 

filtering algorithm in Section H with three masking techniques: 
using the mask D = Dx from the transmitted signal, using 
the mask D = DyDx as designed by Steps 1-4 using the 
true mask D = D.. We run 100 tests in terms of different 
LTI systems h[n) (randomly generated) and different additive 
white Gaussian noises v[n] for each masking method and take 
their mean SNR. Nine iterative steps are used in the iterative 
algorithm (2.12M2.14). Fig. 9 shows the curves of the mean 
SNR versus iterative steps for the three masking methods. 

First, we analyze the time-variant filter (2.12H2-14) with 
the mask D = Dx. From Fig. 9, the SNR drops after the 
second iteration. This is because the mask we used is D - 
Dx, which matches the transmitted signal x[n] and not s[n\. 
Although there is a similarity (see Fig. 8) in the TF plane 
between the DGT of x[n] and the DGT of s[n), they are 
not equal. The similarity is exactly the reason why the SNR 
increases significantly in the first and the second iteration step. 
The difference between x[n] and s[n] causes the SNR to drop 
after the second iteration. Notice that the mask D = Ux is 
known to the receiver, and it is a good candidate in the time- 
variant filtering if the iterative algorithm stops at the second 

iteration step. n_ n n 
We now analyze the performance of the mask U - uxuy. 

This mask rejects a lesser portion of the noise outside D. than 
D  alone does, when the first thresholding constant t0 for Vx 
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Fig. 9.   Mean SNR curves of the iterative time-variant filtering with the following masks: D = Dz. D = DxDy. and D = D,. 

in Step 2 is less than the one in designing Dx alone. The reason 
why this t0 for D should not be large is for the conservation 
because the mask Dx is multiplied by Dy in designing D. 
It, however, happens because the beginning SNR's are not as 
high as the ones in the time-variant filtering with the mask Dx, 
which is shown by the solid line in Fig. 9. Since, in general, 
D = DxDy covers relatively more signal information than 
Dx alone does, the SNR increases when the iteration number 
increases. 

The third masking D = Ds method is the ideal case. With 
this ideal mask, about an 11 dB SNR increase with the iter- 

ative time-variant filtering over the original SNR is achieved' 
consistently. Notice that by Theorem 3, the first iteration is 
equal to the conventional least squared solution. The iterative 
time-variant filtering outperforms the least squared solution 
by about 3 dB. 

To improve the performance of the iterative time-variant 
filtering, what one can do further is to use more sophisticated 
methods to detect Dx and Dy, in particular Dy, so that 
their product D = DxDy is as close to D„ as possible. 
Besides what has been mentioned in the previous subsections, 
directly minimizing, the difference between D = DxDy and 
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Fig. 10.    DGT of y[r>] with noise and s[n] without noise and their corresponding masks (original SNR =2.7 dB). 
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Fig. 11.   New system identification method. 

D„ with training signals is another potential approach. When 
the original SNR is not too low, the chirp pattern of s[n] can 
usually be seen clearly in the DGT domain of the received 
signal y[n]. An example is shown in Fig. 10, where the original 
SNR = 2.7 dB. 

IV. SYSTEM IDENTIFICATION 

In this section, we first use the iterative time-variant filter 
(2.12M2.14) developed in the previous sections to reduce 
the additive white Gaussian noise v[n] from the received 
signal y[n]. In the iterative time-variant filter, for calculation 
simplicity, we choose the first masking method studied in 
Section III-C, i.e., the mask D = Dx, for all calculations 
in this section. With this mask, two iterations are used in 
the time-variant filter in Section II-B. We then implement 
the conventional system identification method, as shown in 
Fig. 11. 

The conventional system identification method used here is 
the cross-spectral method 

Hn ,(«) = Syx M 
Sxx(u) 

(4.1) 

where x[n] is the chirp signal defined in (3.1). It is compared 
with the conventional method without denoising, i.e., 

tfoid, M = 
Sxx{w) 

(4.2) 

where x[n] is also the chirp signal. Since the system iden- 
tification performance usually depends on the signal x[n] 
transmitted, one might say that it is not fair to compare them 
using the chirp signal that is. preferred here for denoising but 
might not be preferred for other methods. For this reason, we 
also compare our new method with the conventional method 
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Fig. 12.   Comparison of system identification methods. The conventional method using chirp signals; the conventional method using pseudo-random si] 
new method using chirp signals, and time-variant filtering. 

original no noise 

(4.3) 

Fig. 13.   System identification examples: Original spectrum |tf M|; identified spectrum without additive noise using the chirp signal; conventional method 
with additive noise of SNR = -0.4 dB; new method with additive noise of SNR = -0.4 dB. 

method, the chirp signal in (3.1) outperforms pseudo-random 
signals by about 6 dB. In Fig. 13, some identification examples 
are shown, where the original SNR is -0.4 dB. As a remark, 
all system identification calculations used in this paper are 
based on the Matlab Signal Processing Toolbox. 

V. CONCLUSION 

In this paper, we proposed a system identification method. 
The proposed method is based on transmitting chirp signals 

using pseudo-random sequences 

#old2(w) = 
SxxM 

where x[n] is a pseudo-random sequence. 
Fig. 12 shows their performances, where 200 tests are used 

for the mean SNR curves for the system spectrum versus the 
original SNR. Our new method performs much better than 
others. Surprisingly, even for the conventional cross spectral 



XIA: SYSTEM IDENTIFICATION USING CHIRP SIGNALS AND TIME-VARIANT FILTERS 

crosscorrelation between xfn] and original noise 

2083 

-0.05- 

-0.1 
-500     -400     -300     -200     -100 0 100       200       300       400       500 

crosscorrelation between xfn] and new noise 

-0.1 

-0.2 
-500     -400    -300     -200     -100        0 100       200      300       400       500 

Fig. 14.   Cross correlations between the new noise v[n] (SNR = 0.74 dB) and the signal x[n] and the original noise t>[n] and the signal x[n] (SNR = -6.4 dB). 

and denoising followed by the conventional identification 
method. The denoising method is based on time-variant filter- 
ing in the joint time-frequency (TF) domain. Since transmitted 
signals are chirp-type signals, they are well-localized in the 
TF domain, and one is usually able to see their patterns in 
the TF domain, even in a very low SNR environment. Due to 

. this property, a significant SNR increase after a time-variant 
filtering can be achieved. Our numerical simulations were 
performed to illustrate this theory. The simulations done in this 
paper were used simply for showing the potential performance 
of the new approach based on time-frequency analysis and 
synthesis techniques in very low SNR environment. Several 
further improvements are possible. They are 

i)     to use more sophisticated detection methods in design- 
ing masks D for the iterative time-variant filter, 
to search the optimal reference signal x[n] so that its 
Fourier spectrum is as far away from 0 as possible and 
it localizes in the TF domain as much as possible; 
to use more sophisticated existing system identification 
methods, such as the method recently proposed in [1] 
by Shalvi and Weinstein, where the additive noise v[n] 
in the system model is not necessarily independent of 
the signal x[n]. 

The reason for mentioning iii) here is because of the fol- 
lowing argument. Since a joint TF domain filter that usually 
depends on the signal x[n] is used, the new noise v[n] after 
denoising and the transmitted signal x[n] may have similar 
TF characteristics, and therefore, they may be correlated, in 
particular, when the original SNR is too low. Such an example 
is shown in Fig. 14, where the original SNR =  -6.4 dB 
and the SNR = 0.74 dB after the second iteration of the 
time-variant filtering. From Fig. 14, one can clearly see that 
the correlation between the new noise v[n] after denoising 
and the signal x[n] exists, whereas it does not exist between 

ii) 

iii) 

the original noise v[n] and x[n]. It should be observed from 
our numerous numerical examples that this phenomenon only 
happens when the original SNR is very low. 
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A Family of Pulse-Shaping Filters with ISI-Free 
Matched and Unmatched Filter Properties 

Xiang-Gen Xia 

Abstract-The raised-cosine pulse-shaping filter paysanta- 
portant role in digital communications due to its intmymbol 
Km™ce (ISI)-r«e property. The ISI-free property holds after 
ItchTfiHering is Jerformed. In this letter^ w«.propose^ 
new family of pube-shaptog filters. These filters are ISI Tree 
wtth Without matched filtering. Using these new PU^P«"« 
Surs, the computational load, and therefore the hardware cost 
£ demodulation for modem design, might be reduced in some 
applications. 

Index 7erm*-ISI-free property, matched and unmatched Al- 
tering, pulse-shaping filters. 

I. INTRODUCTION 

1HE raised-cosine filter 

1. 

// 

0<w< ^r(l-«) 

= < (1) 

0. c>— (1 + n) 

plays an important role in digital communication systems. It 
has been used extensively in modem design for both wireline 
and radio systems. This is mainly due to its intersymbol 
interference (ISI)-free property, i.e., 

fl,       n = 0 
MnT.) = «(n)=|0t       „ = ±l.±2.-.. 

where //(u>) and h(t) are the frequency and the time response 
functions, respectively. There have been extensive discussions 
of this topic; see, for example, [l]-[4]. 

Since the ISI-free property holds after the matched filtering 
is performed for the received signal, the frequency response 
G(u>) of the transmitted waveform g(t) should be the square 
root of H{u>) in (1), i.e., 

G(U,) = V/£M and j(() = r'(GM) (2) 

where T stands for the Fourier transform and T~x means 
its inverse. The matched filtering plays two roles here. One 
is low-pass filtering that reduces the noise, and the other 
is ISI reduction due to the ISI-free property of the raised- 
cosine filters. Since the length of these filters is not short, the 

Paper approved by K. Townsend. the Editor for Computer-Aided Design of 
Communications Systems of the IEEE Communications Society. Manuscript 
received January 21. 1997; revised May 5. 1997. This work was supported 
in part by an initiative grant from the Department of Electrical Engi""™«; 
University of Delaware, the Air Force Office of Scientific Research (AFOSR) 
under Grant F49620-97-1-0253, «nd the National Science Foundation 
CAREER Program under Grant MIP-9703377. 

The author is with the Department of Electrical Engineering, University of 
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Publisher Item Identifier S 0090-6778(97)07267-X. 

hardware implementation cost in current modem systems is 
significant. However, it may occur in practice that, for some 
users, the matched filtering is used purely for reducing the 
ISI. In this case, if the transmitted signal is already ISI free, 
the matched filtering may not be necessary. The question then 
becomes whether it is possible to construct pulse shaping filters 
G(u>) at the transmitter so that both the transmitted signal and 
the signal after matched filtering are ISI free, i.e., 

g(nT,) = 6(n)   and   h{nT.) = S{n) 

where /i(f) is the time-domain waveform of H(u) = \G{u)\ . 
In this letter, we will positively answer this question by 

proposing a family of such pulse-shaping filters. 

II. A NEW FAMILY OF PULSE-SHAPING FILTERS 

In this section, we present a new family of real-valued pulse- 
shaping filters which have ISI-free properties with or without 
matched filtering. 

Let g(i) denote the waveform in the time domain to be 
transmitted, and let G(a)) denote its Fourier transform. Let 
h(t) be the waveform in the time domain after the matched 
filtering of g(0 is performed, and let H(u) denote its Fourier 
transform. Then, H(u) = \G(u>)\2. Without loss of generality, 
from now on, we assume T, = 1. The ISI-free property for 
the waveform g(t) is 

g{n) = 6{n),        n € Z 

where Z is the set of all integers. This is equivalent to 

JTG(u; + 2nir) = l. (3) 
n 

The ISI-free property for the waveform h{t) is 

fc(n) = *(n),       neZ 

which is equivalent to 

52|G(w-r2r»r)|2 = l. (4) 

We want to construct real-valued g(t) that satisfies (3) and (4). 
Let u{x) be a continuous function such that 

x <0 
x> 1 

and 

,<*>={?: (5) 

i/(x) + i/(l " x) = 1.        *€Ä (6) 

where R is the set of all real numbers. An example of such 
a u(x) is 

i<0 
0<*<1 
x> 1 

(7) 

!/(*) = = I i4(35 - 84x + 70z2 - 20i3), 

0090-6778/97$ 10.00 © 1997 IEEE 
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which has almost fourth-order smoothness. The simplest form 

for such v is 
!0.       J- <0 

x.       0<J<1 
1,       x> 1 

which is only continuous, but not differentiable. 
We determine g(t) by constructing its Founer transform 

G(u>): 

G(u) - ' 

1, 

1(1 +e^"«3/2**"1). 

1(1 _ eJ*i/((3/2*)(-'+2')-l)), 

I«' 

M <  |* 
2 4 
-7T <W< -7T, 
34 3    2 
-3*«"<-3* 

M > |*- 
(8) 

$oM:n*w*b$(Q(w)) 

duMct «qu«fe foo» o« the raised cos*» •bs<KN')> 

T 
dotted: raisad cos« «bs<H(w)) «rfth alpha« 1« 11 < 

Notice that the parameter function v controls the width of 
the transfer band of the filter G(u>). The smoothness of the 
function «, determines the speed of the waveform decay of g(t) 
in the time domain, i.e., the length of the filter. The smoother 
v is implies the shorter the filter g(t) will be 

77,w«m /■: The pulse-shaping filters g(t) defined by (8) 

satisfy the following properties.     • 

1) They are real valued. 
2) They are ISI free by themselves, i.e.. g(n) - d(n). 
3) They are ISI free after matched filtering is performed, 

i.e., h{n) = 6(n). 
Proof: To prove 1), we only need to prove G'(-w) - 

G{UJ) for 2T/3 < M < 4TT/3 

C.(_ü,, = i(l-e-i"' ((3/2-)(-+»')-») 

_ l/j _ c-i»i'(2-(3/2*M,\ 

I 1 (\ _ e-i»(l-"(-l + (3/2"V))>) 

= lfl + ei""(3/2*)u''"1)) 

= GM 

where step 1 is from (6). 
To prove 2), we only need to prove (3). The form of G(w) 

in (8) satisfies (3) for 2*/3<u><4TT/3 

£ G(w + 2nx) = G(w) + G(u> - 2TT) = 1. 
n 

This proves 2). n 
The property 3) can be similarly proved. LJ 

The frequency responses ff (u/) and G(u>) for the above new 
pulse-shaping filters in (8) with the v function in (7), and the 

-1        o        i 
frequency 

Hg  I    TV frequency responses |tfU)| and |GM| for the new pulse 
shaping and the raised cosine filters with n = 1/3. 

raised-cosine filter with a = 1/3 in (1) and its square root are 

illustrated in Fig. 1. 

HI.   CONCLLSION 

In this letter, we proposed a new family of pulse-shaping 
filters These pulse-shaping filters are ISI free with or without 
matched filtering at the receiver. This property may reduce 
the hardware cost in designing modem systems in some appli- 
cations where the low-pass (bandpass) filtering is performed 
before the matched filtering. It should be noticed that, although 
the new pulse-shaping filters are real valued, they are not linear 

phase. 
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Abstract. In this paper, we consider the problem of extrapolation of a band-limited signal 
outside a fixed interval from its (approximate or contaminated) values in that interval. We 
propose a new extrapolation method that estimates the error between the extrapolated and 
true values, and which also resolves the ill-posedness of the problem. The method is called 
a modified minimum norm solution (MMNS) method. Both the continuous MMNS and its 
discretization are studied. The error estimates hold for some classes of band-limited signals, 
when the maximum magnitude of the data error is known. These classes of band-limited signals 
are also characterized. 

1. Introduction 

Let / be a finite energy signal, i.e. / e L2(R). Its Fourier transform / is defined by 
/oo 

/(Oe^dr. (1.1) 
■00 

If there exists a positive number Q such that f(a>) = 0 when \co\ > £2, f is called Q band 
limited. An Q band-limited signal / can be represented by its inverse Fourier transform: 

f(t) = ^- I   fW^tko. (1.2) 

It is known (see for example [1]) that a band-limited signal / is the restriction to the real 
line R of an entire function defined on the complex plane C. Therefore, in theory, / is 
determined everywhere by its values on an interval no matter how small this interval is. 
This motivates the following band-limited signal extrapolation problem. 

How does one practically extrapolate an €1 band-limited signal f outside an interval 
[-T, T] when /(f) is given for t e [-T, T] with a certain contamination error? 

The above extrapolation problem is interesting not only in theory but also in many 
applications, such as spectral estimation (Papoulis [25]) and limited-angle tomography 
in medical image reconstruction (Natterer [24]), where only limited observation data are 

available. 
Since / is analytic, a trivial solution for the problem is to compute the derivatives /(n) 

at t = 0 by using the values of / in [—7\ 7"] and then use the Taylor expansion. However, 
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this method is extremely unstable due to the instability of the derivative computations. 
Numerical differentiation is an ill-posed problem and the degree of ill-posedness (which can 
be made precise using Sobolev negative norms) increases with the order of differentiation. 
Therefore, researchers have been seeking other methods. Since the early 1970s there has 
been considerable interest in this area, for example [4-8,11-17,24-30,32-36,38-40]. Since 
the problem itself is basically an inverse problem, it has been recognized that the existing 
extrapolation methods are generally unstable in terms of inaccurate data. The extrapolated 
values can change dramatically when the given data in an interval change slightly, see 
for example [27]. There are also many modified algorithms that have been proposed to 
improve the extrapolation performance. However, to the best of our knowledge there is no 
extrapolation algorithm with which one is able to estimate the error between the extrapolated 
and true values outside the given interval [-T, T] for any nontrivial class of Q band-limited 
signals, when the given data are inaccurate. 

In this paper, we propose a new extrapolation method for band-limited signals that we 
call a modified minimum norm solution (MMNS) method. With the MMNS method we 
are able to estimate the error between the extrapolated and true values for some nontrivial 
classes of band-limited signals, when the maximum magnitude of the error of the given 
inaccurate data in a certain interval is known. This paper is organized as follows. In 
section 2 we study the MMNS method for continuous-time signals. In section 3 we study 
the MMNS method for discrete-time signals, which is a discretization of the method in 
section 2. In section 4 we present tractable characterizations of the classes of band-limited 
signals studied in sections 2 and 3. In section 5 we make several remarks. 

2. Band-limited signal extrapolation in the continuous-time domain 

In this section, we study the MMNS method for continuous-time band-limited signals. 
Without loss of generality, in what follows we assume Q = 2n and T = 1 although we 
continue to use Q and T to emphasize where they appear. We also assume fe = f + r) 
where r) is the error signal that is continuous in time and \n{t)\ ^ e for t e [-T, T], 
and f((t) for t e [-T, T] are the given data. By normalization, we may assume that the 
maximal error magnitude e < 1. 

We first introduce some notation. Let L2[-D, D] denote the space of all signals / that 
satisfy 

aD \l/2 

J/(0|2d/j     <oo 

where D is a positive number or oo. 
Let BC denote all S2 band-limited signals. For y ^ 0, let BCy denote all fi band-limited 

signals f e BC that satisfy the following condition. 
For any S > 0, there exists a signal gs 6 L2[-T, T] such that 

M<») = ^fSs(tW""dt (2.1) 

satisfies the following two properties: 

ll/-/*ll(0)<« <2-2) 

and 

\\fs\koo)<CS-y .     (2.3) 
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where C is a constant that is independent of S and y, and / is the Fourier transform of /. 
The physical meaning of the above subspace of all Q band-limited signals is as follows. 

For an £2 band-limited signal /, its Fourier transform / is supported in [-Q, Q] and 
/ e L2[-Q, &]. The correspondence between the space BC of all Q band-limited signals 
and the space L2[—Q, Q] of all finite L2 norm signals defined on [—Q, Q] is one-to-one 
and onto. Therefore, for a general £2 band-limited signal / its Fourier transform / may 
not have any smoothness property. The subspace BCY contains all £2 band-limited signals 
/ with the following properties. 

(i) The Fourier transform / can be approximated in the L2 sense by a family {fs} of 
T band-limited signals (entire functions of exponential order). This approximation holds 
inside the frequency band of /, i.e. the support [-Q, Q] of /. 

(ii) The L2 norms on the whole real line of the signals in the family {fs} may not be 
uniformly bounded, but the rate of the divergence is not arbitrary. Rather the rate is related 
to the rate of the convergence of {fs) in L2[-Sl, Q] to / as S -*■ 0. 

In this approximations framework, what is gained is the smoothness while what is lost 
is the boundedness of the family of L2 norms on the real line. This trade-off is similar 
to the bandwidth and the timewidth trade-off [29,30]. More precise interpretation and 
characterization of the above subspace will be given in section 4. 

For the maximal error magnitude e mentioned at the beginning of this section and any 
number A. ^ 0, let BTex denote the set of all signals g e L2[—T, T] such that 

"T sm2n(s -t) 
1     f "g(s)ds-Mt) 

\2n2 J_T       s-t 
<A. for te[-T,T].       (2.4) 

The basic idea for this subspace is to find signals in a neighbourhood of the inaccurate data 
signal f((t) for t e [-T, T] such that the Fourier transforms of these signals are T band 
limited. 

For k > e, let g(x be the unique element (the existence and uniqueness will be shown 
in lemma 2) in BTei_ that has the minimum norm: 

\\g(.d(T) = mm{\\g\\(T);geBT(,k). (2.5) 

Let 

1     fT sin27r(s-r) 
/f>(0 = T^/     ——l8^U)ds (2.6) 

2;rz y_7-       s — t 

which is called the MMNS of the continuous-time band-limited signal extrapolation problem. 
We now have the following error analysis for the above MMNS. 

Theorem 1. Let /€-2* be defined by (2.6) with the constant X = 2e. If f € BCY for some 
number y with 0 < y < \, then 

1/cA (0 - /«I < C^~2^        for allteR (2.7) 

where C is a constant independent of € and y. 

Before we prove theorem 1, we establish two lemmas. We first recall the following 
known results from operator theory of ill-posed problems. Let Hi and H2 be two Hubert 
spaces, and AT be a bounded linear operator from Hi to H2. Let K* denote the adjoint of 
the operator K and K^ be the generalized inverse of K (see [9,19,20]). Let TZ(K*) denote 
the range of the operator K*. 

We recall that the (Moore-Penrose) generalized inverse AT* of the operator K is 
characterized by the following extremal property. For any g in the domain V(K^) — 
7^(A") + 7^(AT)-L, the element K^g is the minimal norm least-squares solution of the operator 
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equation Kf = g. If TZ(K) is nonclosed, which is the case, for example, when AT is a 
compact operator with infinite-dimensional range, then the operator K^ is unbounded, so 
the problem is ill-posed. The well known Tikhonov regularization uses the approximation 

xa = (K*K + air1K*g a>0 

where / is the identity operator. It is well known that 

lim xa = K^g for g e V(K^). 
o->0 

Without any 'smoothness' assumption on K^g, it is not possible in general to estimate the 
rate of convergence of xa to K^g or to obtain an error estimate ||*0 - &g\\ for fixed a > 0. 
In what follows we will use the following proposition (see, e.g., [10,18]) which states that 
if K^g € TZ(K*), a kind of smoothness condition, then an error estimate holds. 

Proposition 1. Iftfg € TZ(K*), say K^g = K*g* for some g* e H2, then 

II***-*« IK V«ll** ||. 

Let us consider the operator F_1 from L2[-Si, fi] to L2[-T, T], a restriction of the 
inverse Fourier transform (1.2), defined by: 

(F-if)(t) = f(t) = ^-f   f(a)c*»da> te[-T,T]. (2.8) 
-a 

Then its adjoint (F-1-)* is 

lit J_T 
KF~Tg](co) = — /    g(s)e"»ds coe[-Si,Si]. 

From (2.8), (F~l /)(?) = 0 for almost all t e [-7", T] if and only if f(co) = 0 for 
almost all w € [-Si, Si]. This implies that the null space Af(F~]) of the operator F_1 

is the zero element. This also implies that the space TZ((F~1)*) is dense in L2[-Si, Si] 
since Closure(^((F-1)*)) = //(F'1)1 = L2[-Si, Si]. Thus we have proved the following 
lemma. 

Lemma 1. For any S > 0, there exists gs € L2[-T, T] such that 

11/-/«Ikn) <* 

where 

-r 

-T' 

and f is the Fourier transform of f. 

^(<0)=2^J   8s(s)ciSa'ds 

By lemma 1 and its implication in the time domain, it is clear that the set BTfil defined 
by (2.4) is not empty when X > e. Since the set BTtik is closed and convex, we have 
proved the following. 

Lemma 2. For k > e, there is a unique element geX in BT(k such that 

\\ge.x\\(T) = min{||s||(r) : g e BTe<x). 
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With the function gfi\ as in lemma 2, define 

~8(x{0}) = hj *«.*<5>ci"'dj- (2-9) 

Then the MMNS /€,A. in (2.6) can also be represented as 

Ui(t) = ± J   g^(a))e-isa)da>. 

With the signal fs in (2.1), define 

Mt) = T- /"   /«(J)e-"'dj. (2.10) 

We are now ready to prove theorem 1. 

Proof of theorem 1.   When / e BCY for y > 0, by (2.1), (2.2) the signal gs with 
<5 = (27r/\/2ß)e satisfies 

where fs is related to ga via (2.1).   In the time domain, by using the Cauchy-Schwarz 
inequality and the above inequality we have 

~   [ 2TT j y_ 
1/(0 - fs(t)\ < r-   /    (/M - /«(fl>))e-,"Bdü) 

n 
<e 

where 

/(0 = ^- /"   /i(w)e-i,a'dw 
27T J_n 

1     l-7" sin2jr(s-r) 

-r       s — t 

where the convention Q — 2n made at the beginning of this section is used.   By the 
assumption 

1/(0- /(OK e 
we have 

1/(0- /(OK 2e. 
According to (2.4), we have proved that g{ is in BTe^- Hence, by lemma 2 we obtain 

\\g(.2t\\(T) < IIS(2*/,/2n)JI(7> 

Moreover, by (2.1) and (2.3), we have 

11^.2,11(7) < WgwJTäxhT) < 27tC(.27r/V2ä)-r€-r. 

Since 

l/.2,(0-/(0K2e        te[-T,T] 

we have 

l/.2<(0-/(OK3e te[-T,T]. 
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For the signal fs in (2.10) and considering (2.2) in the time domain, we have 

\fs(t) - f(t)\ ^ —5        for t e R. 

Therefore, 

\fM» - fs(t)\ < 3e + —5 for f € [-7, T]. 

For a > 0, let 

(2.11) 

xa = ((F-1)*/-' +a/r1(*"1m,2<(0 - /*('))• 
By using proposition 1 with Ä" = F_1 and <S = e, and (2.1), (2.2), we have 

\\ge,2e - ff- Xa\\(n) = \\K\fe.2f ~ fs) ~ *orll(£2) 

< V^(ll^,2,ll(r) + ll^ll(r)) 

< 27rC€~y<Jä, 

where C is a constant, and g(t2e - fs = ^*(g€> - &) from (2.1) and (2.9). On the other 
hand, 

Thus, 

_     TV2Ü /       \/2fi\ e 
£ +    3 + —— )-■ n      \ 2n J a \\g(.2,-fs\Un)^27tC€-yV^ 

Using (2.2) with S = e, we have 

•     H&.& - /ll(O) ^ 2* C^V« + —^— (3 + -^-J - + «• 

In the time domain, using the Cauchy-Schwarz inequality, we obtain 

\f*M') - /(0I < 
2TT 

„   ._     TV2Q /      V2fi\ e  , 
2nCe-y^ +    3 + ——   - + c 

IT      \ 2n   I a 
for t e R. 

Therefore, estimate (2.7) in theorem 1 can be proved by taking a = ew+y)ß and using the 
assumption e < 1 made at the beginning of this section. □ 

3. Discretization of the MMNS method 

Since in practice we usually process discrete-time signals, it is very important to consider 
the discretization of the MMNS method proposed in section 2. To do so, we need some 
notation. 

For any number X with A > e and positive integer m, let Ml\Qm 4- 1) denote the set 
of (2m + l)-dimensional vectors a = {a(k)} e C2m+1 such that 

VE""2^:-'-'*' -*(-) n2 m .'-^ - — - \mf 2TT
2
 m k=-m 

<X for — m < n < m. (3.1) 
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For X > e, let z* = {?*(&)} be the unique element (the existence and the uniqueness will 
be shown in lemma 4) in Ml\(2m + 1) such that 

||4|| = min{||a||; a = [a(k)} e Mlf(2m + 1)} (3.2) 

where 

Finally, let 

A /   m \1/2 

INI = ( £ ifl(*)i2) • 

, 1    1   <£-* sin27r(£ -/)   . 

*=—m m 

Notice that, for a signal / € BC and any constants X > e ^ 0 and any positive integer 
m, we can always construct the signal fftx in (2.6) and the signal ♦* in (3.3) from the 
given data fe(t) for t e [-T, T]. In other words, the MMNS ft^ given in (2.6) and 
its discretization ** in (3.3) can be found for any / € BC using its known values on a 
segment. 

In practice, it is usually difficult to get the MMNS /€>* in (2.6). A practical way to 
compute it is to use the discretization form that is formulated by ** in (3.3). We have the 
following convergence of the discretization ** of the MMNS. 

Theorem 2. For any constant X with X > e, the discretization 4»* converges to ft± uniformly 
on compact sets ofR when m -*■ oo. 

It is interesting to notice that the convergence result in theorem 2 does not require any 
additional condition for a band-limited signal /. In order to get an error estimation for the 
MMNS, an additional condition, i.e. / € BCy, in theorem 1 is needed. 

To prove theorem 2, we need several lemmas. 

Lemma 3. For each fixed XQ > e, there exists M > 0 such that, when m > M and X > Xo, 
the set Mll(2m + 1) defined in (3.1) is not empty and ||z* || ^ C^, where CA.0 is some 
positive constant and independent ofm and X with X ^ XQ. 

Proof.    By lemma 1, for S = (X — e)/3, there exists gg € L2[— 1,1] such that 

ll/-/«ltar)<(*-0/3 

where 

Thus, 

^(a,) = i/8s(s)cisa>ds- 

I— f2" /,(a>)e-uo,cto-/(0 
2* 

< (X - O/O^/JÖ for all t e 

In other words, 
r2jr i      fl 

^L^'Tni^"^-'" < (X - e)/3 for all t € R. (3T4) 

Since the space of continuous functions is dense in L2[— 1,1], there exists hg e C[—1,1] 
such that 

fe - Ml<i) < (X - e)/3. 
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1^- (    ^T- f (gds)-hs(s)Ws»dsd<o s£ _L   [^ J_   fl |ft(j)-A«(j)|dsdo) 

< \/2(A - e)/(3jr) < (A. - e)/3 for all f e R 

By (3.4) we have 

|2TT 

That is, 

I   1     fl sin2n(s -t) 

2* y_2^        2n ./_, 
<(2A + e)/3        for all f e [-1,1]. 

£ -hs(s)ds-Mt) 
\2TZ

2
 J_,       s-t 

Since A$ is continuous on [-1,1], the following sum 

J_i v sin27r(£-f)
ft f *A 

ä=—m m 

converges uniformly to 

1     /"' sin27r(.y-r) 

<(2A + e)/3 for all f € [-1, 1]. (3.5) 

2^2 /_, j -t 
hs(s)ds 

for r e [-1, 1]. Therefore, for (X - e)/3, there exists Af > 0 such that, when m > M, we 
have 

J_J_ ^k sin2*(£-*)t 7*^        1     /-'sinfcrfr-*), 

27r2 /n E =S^'. (!) - si £ =^-*»-. i. _ ii 
k~—m m        m 

sj (A - e)/3 for |n| < m. 

Combining this with (3.5), we obtain 

1    1    »    sin2;r(£-£)     /* '   \m        m / L 

«.   .... A-i ' k=—m m        m 
(=)-'■(£) ^A for all \n\ < m. 

Let a(Jk) = AÄ(£) for \k\ < m.  Then, {a(k)} € Mlfam + 1).  This proves that the set 
Mll(2m + 1) is not empty when m > M. 

Moreover, the above M can be large enough such that, when m > M, 

1 

m 
^ |a(*)|2< /    |Aä(j)|

2(ü+l 
:=-m ,'_1 

= I  |A(i-f)/3(*)|2dj + l 

^(llga-o/3ll(i) + (A-0/3)2+l. 

Let (A - e)/3 < 1 and 

C.0 = {(k(X„-f)/3ll(l) + l)2+l}1/2- 

Then lemma 3 is proved. D 
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Similar to lemma 2, since the set Mll(2M+l) is closed and convex, we prove lemma 4. 

Lemma 4. For every m and X with X > e, there exists a unique element 

zx
m = {z*(*)} g Ml\(2m + 1) 

such that 

\\zkJ = min{||a|| : a = {a(k)} e Ml\(2m + 1)}. 

Recall that a family of functions of a complex variable is called a normal family if every 
sequence of the family contains a subsequence which converges uniformly on compact sets. 
It is known that a family of functions that is uniformly bounded in any compact set is a 
normal family. We use this result in the proof of the following lemma. 

Lemma 5. For each Xo (> e), the family of functions {^(Oh^o.m defined in (3.3) is normal 
when t is extended to the complex plane C 

Proof.   The functions ^ in (3.3) can be rewritten as 

Kit) = 
l  i 

4TT
2
 m j_2„ 

2n 

f    e-"" JT elko)/mzx
m(k)dco 

J-2" k=-m 

27t 3-t, \2n m ^ mK }) 

Thus, 

*iwl«4^/.2»k^e"""'"zi(') dco 

e2n\z\  1       « 
^—-J2\zx

mik)\ 
it   m 

e2^' /2m + l\ 

*    \    m    ) 
lemma 3 l /2m + 1\1/2 

1/2 

£ 
*1  /2m+iy 
7t\m) 

C^e2»'" for X > A-o z eC. 

This proves that the family {^h^.m is normal. 

Define 

1   1 
4» = 27T m £ Jkco/m   k «£<*)• 

D 

(3.6) 

Lemma 6. For each XQ (> e) the family {^(z)}x^x0.m " normal and its limit functions are 
1 band limited. 

Proof.   The proof of normality is similar to the proof of lemma 5 by using lemma 3. 
By Fatou's lemma and lemma 3, it is easy to prove that all limit functions of the family" 

\<PmWhssAo.m are in L2(R) when z is restricted to the real line R.   Therefore, by the 
Paley-Wiener theorem (see [1]), lemma 6 is proved. D 

Lemma 7. Let gex be as defined in (2.5).  For a fixed e, let h(X) — ||g€,x||(i).  Then the 
function h(X) is continuous for X > e. 
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Proof.    Let A.0 and A.! be any two positive numbers such that A.0 > A.j > e. For any A. > ku 

define 

i(Aa)) = ^J'1
ci,"^(s)d5- 

Then 

|g«.x(a>)| = 1^ J1 e^,x(*)ds| < e'»1^llg^llo) < ^"»Wllo) for X > Xl- 

This implies that the family {g(,i(ft))}i>i, is normal. Similar to lemma 6, its limit functions 
are 1 band limited. Let h,M be one of its limit functions. Let X(n) -» A.J and suppose 
that the sequence {gtM»)) converges to h(M uniformly on compact sets of C. Then, there 
exists heM € L2[-l, 1] such that 

*«,*» = ^f  ^ahtM(s)ds. 

By the definition of /€,x(n) we have 

= l/«.i(»)(0 - /«(Ol < M«) for ' e [-1,1]. |i- [    e-i"Bie.i(B)(ü))dü»-/€(0 

Let n -> oo in the above inequality 

I   i      r2n i      /•! 

/   '^"hf   ^Mis^^ds-Mt) <X0        for re [-1,1]. 
I 2;r J_& 

Thus, htM e BTcM. Therefore, 

l|Af,x0H(,) > llft.*oll(D- (3-7) 

On the other hand, for any B > 0, 

\ht xo((o)\2do) = lim   /    |&.Mn)(cü)l2da> 

/oo   

lgf.A(n)M|2d« = lim«-*oollJe.A(n) ll(oo) 
•oo 

1    2 1 2 

= — limn_ooll^.X(n)ll(i) < 2^\\geMh\y 

Therefore, 

l|A«,Ao 11(00)   <   -y=l!&.A0ll(l)- 

In other words, 

l|Af.X0l|(l) < II^.Xoll(l)- 

By (3.7) and lemma 2, we have proved that hf.^ = g(M. Therefore, we have proved 

lim A(A.) = h(k0). (3-8) 
X-X0

+ 

Now we want to prove that 

lim A(A.) = A(Xo). (3-9) 
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Let A.] be any positive with 0 < Ai < Ao. Let {A(n)} be any sequence of numbers with 
A.] < A(n) < X(n + 1) < A0 that converges to AQ. Define 

for s €[-1,1]. (3.10) 

Define 

Then 

\h„(t) - ff(t)\ 
|   1     f1 sin27r(j-0. I 

1     /"' sin2^r(s-r) A(n) - A. 

A-o — A.1 

A.0-A-, 

This implies that hn e BT(ii(„), 
From (3.10) we have 

. A(n)-A, 

-fo.»o(*)dj-/«(») 

A-o-A. 
Ao = A(n). 

BAJo; < f l - MüL*A ||^,||(1) + ^|U|0, 

Letting n^oowe obtain 

Hmn->ooPJ|(l) < H^.Aoll(l). 

Since we have proved that h„ e BT(%x{n), 

WgtMn)\\(\) < IIAnll(l). 

This proves that 

On the other hand, the following is clear: 

ll«(,iCi)H(i) > \\S(MW- 

Thus, 

lim ||&,A(„)||(i) = ll^./olld) 
n—► oo 

that is, (3.9) is proved. This proves lemma 7. 

We are now ready to prove theorem 2. 

Proof of theorem 2.    By (3.3) and (3.6) we have 
2n 

*£(') = ^ f    ^(^e-^dfl, 

D 

If we can_prove that every limit function of the sequence [^} is fftk, theorem 2 is proved. 
Assume h(tk is a limit function of the sequence {**}. Without loss of generality, we may 
assume the sequence {**} converges to h(k. Since the family {**} for a fixed A is normal 
by lemma 5, the convergence is uniform on compact sets of C. By lemma 6, the family 
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{</£} is also normal for a fixed k. We may assume that the sequence {^} converges to htX 

uniformly on compact sets of C and 

K x(co)e-u<0dco. 
-2K 

1      f1 

By Lemma 6, there exists h€,x e L2[-l, 1] such that 

Äei(ö)) = ^- [ efaa,Äe.x(s)dj. 
zjr ./_] 

Taking the limit as m -> co in 

and using the continuity of h(X(t) and f((t) for r € [-1, 1], we obtain 

|Ä«,x(0 - /«(Ol < * * e t-1,1]. 

This proves that he<x e ST"«,*- Thus- 

I|Ä«.A||<1) > llft.xll(D- 

. m 

(3.11) 

We next want to prove the reverse, inequality. 
For A. > e, choose ^ such that A. > ß > e. For this \i, we have g£iM € BT(<k. Using 

the same argument as jn the proof of lemma 3, for (A. - fi)ß there exists gttll e C[-l, 1] 

such that 
A. — /i. 

llg«,M -5«.MIIO) ^ —ö—• 

Thus, if we let 

.»=2^/ 

1 sin27r(j -0 

j-r 
«^(s)'if 

then, 

y/lk — a , r     ,    ,, 
IICMW - /«.*WI < ^       for f € I-l. !]• it      3 

Therefore, there exists M > 0 such that when m > Af we have 

1   I f^ sin^^-^),     fk 
2jt2 

k=—m 
k_ _  n_ 
m        m 

*■* (i) -/e © 
2A. + M 

<   < A.. 

By (3.1), this implies that gttlt = {g€lM(£)} 6 .M/j[(2m + 1). Therefore, 

IIÄCMII > 114II- 

Thus 

Therefore, 

  lii     — 1 
lim»,-«,—\\zt\\   < limm_ 

m m 

/  l \l/2 

Hindoo-||*JJ21     <II^.MII(D + k — ß (3.12) 
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On the other hand, for any B > 0, 

f   |Ä€.x(o))|2= lim   f   \<j>km(co)\2dco 
J-B n^ooJ-B 

< limm_>oo /      |</>*(w)|2dw 
J — Tim 

/Tim 1 

= limm_>00^— £ |z*(*)l2- 
k=—m 

Therefore, 

l|A«.l ll(oo) < ^iSin-oo-   £   lZ«W!2- 2;r     "^   m> 

Since 

we have 

By (3.12), 

IIÄ^II^^ÜrH^oo- £ |z*(*)|2 
m
 i. 

IIÄ..JL ||(|)   <||ft,M ||(1) + ■*"        M 

3 
Letting \i -*■ A., by the continuity of A(A.) on (e, oo) in lemma 7, we have 

IIÄCAIIO) ^ llft.ill(i). 

By (3.11), we have proved that 

IIÄ«.* ||(i) = ||*.JI Ho,. 

Since h(,x e BT(k, by lemma 2, we have 

^€,>.C*) = ge,\(s) for s e [—1,1], almost surely. 

This proves that ** converges to /€ix as m —► oo. D 

4. Band-limited signal spaces B£7 

The error estimate result in theorem 1 is for band-limited signals in the spaces BCY. The 
conditions in (2.1)—(2.3) defining these spaces are rather abstract. In this section, we study 
their properties and simplifications.   To do so, let us first review the prolate spheroidal 
wavefunctions (see [25,29,30]). 

Let K be the following operator 

(Kf)(t)= f   Sm"('~r)/(T)dT f€L2[-T,T]. (4.1) 
J-T      X\t - X) 
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It is clear that the operator K defined on L2[-T, T] is self-adjoint and compact. Let fa and 
kk, k = 0, 1,2,..., be the eigenfunctions and the corresponding eigenvalues of the operator 
K, respectively, such that fa, k = 0,1,2,..., form an orthogonal basis for L2[-T, T] with 

/ 

T 
fa(.t)fa(t)dt = kkS(j-k) 

T 

where S(n) = 1 when n = 0 and 8(n) = 0 otherwise. Moreover, we have 

1 > Ao > A.] > • • • > 0         and         kk -> 0 as k -> oo. (4.2) 

From (4.1), 

Mt) = 1 fT sinn(r-r) dr t e {_Tt T] k = 0,h2  (4.3) 

Although the above eigenfunctions <j>k are only defined on the interval [-T, T], they can be 
easily extended to the whole real line R by letting t take an arbitrary real value in formula 
(4.3). By doing so, it was proved in [29,30] that the extended eigenfunctions <f>k for t e R 
have the following orthonormality: 

f <Pj(t)<pk(t)dt = S(j-k). 

These extended eigenfunctions fa are called the prolate spheroidal wavefunctions in [29,30]. 
It was also proved in [29,30] that these prolate spheroidal wavefunctions fa, k = 0,1, 2,..., 
form an orthonormal basis for the Cl band-limited signal space BC. Thus, any / € BC can 
be expanded as 

oo 

/(*) = £>&(/) *€R (4-4) 
*=o 

where 

and 

and 

/oo j     fT 
f(t)fa(t)dt = —        f(t)fa(t)dt (4.5) 

■oo Xk J-T 

00 

H/ll?oo) = £a*2 <4-6> 
k=0 

Jn-fX**. (4.7) 
k=0 

We now have the following result. 

Theorem 3. Let f be an Q. band-limited function and have the expansion (4.4), (4.5). If - 

oo       a2 

H , l-2y/3   < °° f°r SOme Y'   °^y <\ 
k 

then f € BCY. 

k=o K 
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Proof.    For A > 0, let DA be the truncation operator on L2(R): for h e L2(R), 

1655 

h(t) 

0 

te[-A,A] 

otherwise. 
(DAh)(t) = 

By (4.4) and (4.5), letting F denote the Fourier transform, we obtain 

00 

/(£») = Ff(a>) = Y^atFfaico) 
t=o 

oo 

= Y^akDnFDT<pk(t)/kk 

Let 

Then 

and 

and 

Let 

Then 

and 

Let 

Jfc=0 

t=o *=o A* 

/n = E °*^* 
*=0 

ll/»-/H(oo)=    E   °* 
t=n+l 

oo 

\\fn-ff(n) = 27t   J2al 
t=n+l 

fn = DnF HH 
g„ =2nDT^y\—<j)k. 

k=0X* 

fn = D"2^FSn 

J>     „2 "     „2 

ii^ii?D = E?l^ii(n = Er 

»t2 = 

*=o 

I -2y/3 

^ Jt=0 A* 

it = 0,1,2,... 
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Then by the assumption 

00 

* = X>2<°o 
*=0 

we have 

ll*4r) = I>Vy/3 

and 
00 

k=n+\ 

By (4.2), for any S > 0, there exists N such that 

\\-2Yß < 5 for k > # + 1 

and 

Then 

and 

xl-2y/3 > s f0Tk^N. 

WfN-f\\2in)^27t  ]T b2S^2jtBS 
k=N+l 

k=0 

For 0 ^ Y < 5»tnere exists a constant C > 0 such that 

51g*ll2r)<C. 

Let 

Then 

and 

fV2BnS — i-FSN- 
1 

2w" 

Mj2Brs-fha><JZBZ8 

>r    1 
(yiB^sj ||/^^||(oo) = (J2Bn8)Y -j=\\gN\\(T) 

^ Byi\2nfy-^2&yi2\\gN\\{T) 

< B^/2Cl/2(2n)iy-})/2 for 0 < y < \. 

This proves that / satisfies (2.1H2.3). □ 
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Before going to the next result, we recall a result on operator equations. Suppose that K 
is a compact linear operator from Hubert space Hi to Hubert space H2. Let 6f ^ Q\ ^ • • • 
be the sequence of eigenvalues of the operator K*K, and v\, v2, ■■■ be the associated 
orthonormal eigenfunction sequence. Let p.n = 9~x and 

un = ßnKvn. (4.8) 

Then {«„} is an orthonormal sequence in H2 and 

vn = fin K*un. (4.9) 

We call the sequence {w„, v„; /x„} a singular system for the operator K. Then, Picard's 
theorem can be stated as follows (for details, see, for example [10, 20]). 

Proposition 2. Let K : .Hi -»• H2 be a compact linear operator with singular system 
{u„, v„; ß„). In order that the equation Kz = g has a solution, it is necessary and sufficient 
that g e Ker(K*)±(= CIOSUT&}Z(K)) and 

00 

][>n
2|<g,Kn>|2<00 

where (, > is the inner product on H2. 

We now have the following result. 

Theorem 4. Assume that f is Q band limited and with expansion (4.4), (4.5). Then: 
(i) f 6 BCY with Y = 0 if and only if its Fourier transform f(co) or -f (-co) for 

co e (-£2, £2) is a piece of T band-limited signal; 
(ii) f e BCY with y = 0 if and only if 

y^<oo. 

Proof of (i). 'If part': If -f(-co) for co e (-£2, Q) is a piece of T band-limited signal, 
then there exists g e L2[-T, T] such that 

1    fT 

f(co) = — /    clsag(s)ds co e (-S2, $2). 

For any S > 0, let gs = g. Then, f&(co) = f(co) for co 6 (-S2, £2). Let C = ^\\g\\iTy 
Then 

ll/«-/ll(O) = 0<* 

and 

||/* ||(oo) = -^= lift II (D = -7=11*11(7) = C. 
V27T v2n- 

Thus / e BCy for y = 0. 
'Only if part': If / e B£o> then for every S > 0 there exists gä € L2[-7\ T] such that 

ll/«-/ll(Q)<* and ||gä||(r)<27rC 

where C is a constant and 

1    fT 

MC0) = 2^J    8ds)e"'°ds- 
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Thus, the function family {fs} is normal. In fact, 

\Mz)\ < ^e'^Hftll(T) ^ cV2Te™ for all S > 0 z e C. 

Therefore, for every sequence {<$„} that tends to 0 when « -> oo, there is a subsequence 
{<$„ } such that {/{„.} converges to a 7 band-limited signal ft uniformly on compact sets of 
C. On the other hand, 

\2JT J_ 

n 
e-i"°fSitXw)dco-f(t) 

■n ' * "to"*"' 

Letting j -> oo, we obtain 

-L /   e-^ÄMdö» = /(f). 

This proves h(co) = f(co) for co e (-Q, fi), that is / is a piece of a 7 band-limited signal. 

Proof of (ii).   Let Mi = L2[-T, T] and H2 = B£0.   The inner product on H2 is the 
usual L2(R) inner product.   Let K be the integral operator given in (4.1).   By part (i), 
K(L2[-T, T]) = BCQ. By theorem 3, all finite linear combinations of the eigenfunctions 
<pk are in BC0- Thus, Closure(ß£0) = BC and therefore, BC = Closure(ft(A")), where the 
closure is under the usual L2(R) norm. Also, 

f°° sir\Q(s-t) r, N , ,     ,     „r 
K*f(t)=        —-i—-Lf(s)ds        foTfeBCo. 

J-oc      7t(s-t) 

From (4.8) and (4.9), 

un = p2
nKK*un. 

Hence,   {/x2}  are eigenvalues of the operator  KK*  and  {«„}  are the corresponding 
eigenfunctions. Since 

f°° sinn(.y-0 , , , _, 

J-oo    n(s-t) 

we have 

KK*<j>n = K<t>n=kn<f>n. 

Thus by the completeness of the sequence {(/>„} we have 

k„=ß~2 and <pn=un. 

By proposition 2, 
oo °° a2 

feBC0 iff YX'K/.^l^cc iff£^L<oo. 

This proves (ii). O 

Combining theorems 1, 3 and 4, we have the following corollaries. 

Corollary 1. For 0 < y < \, if 
oo oo        Q2 

fit) = X>&(0        W £ 7T473 < °° 

then, 

l/«.&(0 - /(Ol < C^1"2^3        r € R. 
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Corollary 2. Let f be Q band limited. If its Fourier transform f(co)for co e (-f2.fi) is a 
piece of aT band-limited function, then 

l/c&W - /(Ol *S Cexß        t e R. 

5. Remarks 

In [14,17], approximations of Q, band-limited signals / are considered. These authors use 
finite data of / on [-T, T] to recover the whole / on [-T, T]. The optimal algorithm in 
the worst case for the recovery has been found in [14,17] as follows. 

Let Om be an information operator which is a mapping Om : BC -*■ Cm, 

0»/ = (/(r,),/(r2) /(*„))• 

An algorithm <*> is a function-valued mapping on OmBC. The optimal algorithm using Om 

in the worst case takes the form: 

where the coefficients b\, b2 bm are determined by the solution of the linear system 

Ä    sin£l(tn-tk) 
2^bk =/(/„) /i = l,2,...,m. 
*=i l" ~ '* 

We can see that this is similar to the discretization of the MMNS in (3.1)—(3.3). 
As we have already stated, a band-limited signal is the restriction of an entire function 

to the real line. But it is more than this. The Paley-Wiener theorem (see [1]) gives a direct 
characterization of band-limited signals; namely, a signal in L2(R) is 27r band limited if 
and only if it is the restriction of an entire function and is of exponential order on the 
real line. This provides a powerful property for extrapolation of band-limited signals that 
distinguishes the problem within the realm of analytic continuation of analytic functions, 
and makes finer and stable recovery results possible. 

There is considerable literature on uniform and nonuniform sampling theorems for the 
recovery of band limited and other classes of signals from a countable set of sample values 
(see [2, 3, 12, 23, 37]), the simplest and most celebrated version being the Shannon- 
Whittaker theorem, which asserts that a JT band-limited signal can be reconstructed via the 
cardinal series 

/c) = E /<"> 
sinjr(r — n) 

nit-n) 

Various error estimates (truncation, jitter, amplitude, and aliasing errors) are also known. 
The problem of signal extrapolation from an interval (which usually has a small length) is 
markedly different from the reconstruction of the signal / via a sampling expansion theorem 
(which utilizes values of / on an appropriate infinite sequence with no accumulation point). 

As we have shown BC0 is the range of the Hilbert-Schmidt compact linear operator 
(4.1) on L2[-T, T]. B£0 is nonclosed in L2[-T, T]. Nashed and Wahba [21,22] have" 

.shown that the range of a Hilbert-Schmidt compact operator AT is a reproducing kernel 
Hilbert space (RKHS) HQ with reproducing kernel 

Q(t,s)=f   K(t,u)K(s,u)du 
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where Kit, u) is the Hilbert-Schmidt kernel.   The inner product on HQ is given by 

</i, h)Q = (tft/t. K^h) for /i. /2in nQ> where ** is me Hilbert space (Moore-Penrose) 
generalized inverse. Equivalently,. 

</I./2>ö=y pi(*)^(*)«^ 

.where p, is the element of the minimal norm which satisfies Kp = fh corresponding to /) 
in BC0 for i = 1,2. We recall that a Hilbert space H of functions / on an interval J is said 
to be a RKHS if'all the evaluation functionals £,(/) = /(f), / e H, for each fixed t e I 
are continuous. Then by the Riesz's representation theorem, for each t € I there exists a 
unique element, call it Q„ in H such that /(f) = {/, Qt), / e H, where (,) is the inner 
product on H. Let Q(t, s) = (Q„ Q,) for s, t in J; this is the reproducing kernel (RK) of 
H, and the space H with RK Q(t, s) is denoted by He. The space L2(J) is not a RKHS. 

The Paley-Wiener space BC of band-limited signals with band [-JT, n] is a RKHS with 

RK 
sinjr(f-j) 

In [23] it is shown that there is a strong affinity between RK Hilbert spaces and sampling 
theorems, and general sampling theorems were established for signals belonging to a RKHS 
which is also a closed subspace of the Sobolev space H"1. The preceding remarks about 
BC0 and the other related spaces being RKHS may suggest that a broader framework within 
which the type of extrapolation results derived in this paper may also hold. 
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A Quantitative Analysis of SNR in the Short-Time 
Fourier Transform Domain for Multicomponent Signals 

Xiang-Gen Xia 

Abstract—A quantitative analysis is given for the signal-to-noise ratio 
(SNR) in the short-time Fourier transform domain for multicomponent 
signals in additive white noise. It is shown that the SNR is increased 
on the order of 0(N/K), where A' is the number of components of a 
signal, N/T is the sampling rate, and T is the window size. The SNR 
increase rate is optimal for given A'. For mis result, the SNR definition 
is generalized, which is suitable for signals not only in the time domain 
but also in other domains. This theory is illustrated by one numerical 
example. 

L INTRODUCTION 

Time-frequency analysis [11H12] has become an important tech- 
nique in analyzing wideband/nonstationary signals in various applica- 
tions including inverse synthetic aperture radar (BAR) imaging [1], 
biomedical signal analysis [2}-[3], speech signal analysis [4], and 
FM radio communications [5]. One of the most important features 
of this technique is that it usually increases the signal-to-noise ratio 
(SNR) in the joint time-frequency (TF) domain. This is particularly 
advantageous for signals that are difficult to detect in the time or 
frequency domain alone. The reason for this important feature can 
be stated as follows. A joint TF transform usually spreads noise 
from one dimension (the time or frequency) into two dimensions 
(the joint time and frequency) while it usually concentrates a signal 
in localized regions in the TF plane. A number of research results 
on the estimation of time-varying frequencies have appeared, such as 
[5H7] with Wigner-Vllle distributions. However, there is little on 
quantitative analysis for the SNR increase for any joint TF transform, 
which is certainly an important issue in practical applications in signal 
detection by using thresholding. 

In the conventional SNR definition, the mean power is taken over 
the whole domain of a signal. If the signal is stationary in this 
domain, this definition works fine. However, if the signal is not 
stationary in this domain, such as a single tone signal in the frequency 
domain, this definition is no longer suitable. In this correspondence, 
we first generalize the SNR definition so that it is not only suitable 
for signals in the time domain but also in other domains, such as 
the frequency domain and the joint TF domain. We then present a 
quantitative analysis of the SNR increase rate in the joint TF domain 
for the short-time Fourier transform with rectangular windows, where 
multicomponent signals in additive white noise are considered. The 
main result can be stated as follows. 

A*      number of monocomponents in a signal; 
T       window size for the short-time Fourier transform; 
N/T sampling rate. 
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Fig. 1.   Single tone signal. 
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JV-point discrete Fourier transform is performed in each window. 
Then, the SNR in the joint TF domain is increased on the order of 
0(N/K) when the window size T is small enough. 

This correspondence is organized as follows. In Section II, we 
formulate a proper definition for SNR in different domains. In 
Section m, we present the proposed quantitative approach to analyze 
the SNR increase rate in the joint TF domain. A numerical example 
is presented in Section IV to illustrate the proposed approach. 

TJ. SNR IN DIFFERENT DOMAINS 

The conventional signal-to-noise ratio (SNR) is defined as the ratio 
of the mean power of the signal over the mean power of the noise, 
where the mean is taken over the whole time domain. It is formulated 
as follows. Let y[n\ be a distorted signal 

y[n] = x[n] + 77(71],    0 < n < N - 1 (2.1) 

where X[TI] is a signal, and ri[n] is an additive white noise with 
variance <r2. The SNR is defined as 

SNR = 
_Sl~o1Nn]l 

JV<72 
(2.2) 

This SNR is used quite often in describing the noise level relative 
to the signal and in distinguishing the signal from noise in stationary 
environments. When the SNR is too low, in general, it is impossible 
to distinguish the signal x[n] from y[n]. However, for some special 
kinds of signals x[n], such as narrowband signals, it is possible 
to detect the signal in the Fourier transform domain, even when 
the SNR is of negative decibels. An example is shown in Fig. 1, 
where the SNR = -11 dB and the signal x is a single tone 
signal. 

According to the SNR definition in (2.2), an orthogonal transform 
does not change the SNR, i.e., the SNR in the transform domain is 
exactly equal to the SNR in the time domain. This is because of the 
energy preservation property of orthogonal transforms. This implies 
that the SNR of the signal in the frequency domain in Fig. 1(b) is still 
-11 dB. However, one can clearly see the signal in the frequency 
domain. This suggests that the SNR definition in (2.2) is not proper to 

1053-587X/98S10.00 © 1998 IEEE 
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judge the possibility of detecting the signal in the frequency domain 
in Fig. 1(b). It should not be surprising since the signal in Fig. 1(b) is 
not stationary, and the mean power over the whole frequency domain 
is, of course, not proper to the signal with a single spike. 

The above observation suggests that the SNR definition is 
transform-domain dependent and should relate to the bandwidth 
of a signal occupied in that domain. We now introduce the following 
SNR definition in a domain. 

Suppose the expression (2.1) is already in a transform domain, 
where n is the discrete variable in the transform domain. Assume 
the additive white noise ij[n] in (2.1) occupies the full band in the 
transform domain. For the signal x[n] of length N,0<n< JV-1, let 

B±U:0<n<N-l  and  \x[n]\2 > 0.5 ^max^ |*[n]|2 j 

(2.3) 

(2.4) 

the second-order derivative 4>'l(t) is also upper bounded by 4>k, 
i.e., \(j>k(t)\ < 4>k for a positive constant <j>k for all t € [0,7o]. 

4) The K instantaneous frequencies <S>'k(t), 1 < fc < A, are 
distinct 

Additional details on multicomponent signals can be found in [8]. 
It can be easily shown that the process y(t) in (3.1) has locally 
stationary behavior [9H10] m tne following sense: 

where the number 0.5 comes from the common 3-dB bandwidth 
definition in communications. Then, the SNR is defined as 

SNR- \B\c* 

where |5| denotes the cardinality of the set B. Notice that this 
definition is similar to the SNR definition in communications, where 
the signal is only considered in its bandwidth. 

One can clearly see that the SNR in (1.4) is always greater than or 
equal to the SNR in (2.2) because the mean in (2.4) is only taken over 
the first large values in the whole domain. With the SNR definition in 
(2.4), the SNR in the time domain for the signal in Fig. 1(a) is -8.4 
dB, but the SNR in the frequency domain for the signal in Fig. 1(b) 
is 16.3 dB. Although about 2.6 dB SNR is increased over the original 
definition in (2.2), the SNR in the frequency domain is significantly 
better than the old SNR that is, -11 dB, in describing the signal 
characteristics over the noise. The time domain SNR increase is 
consistent for relatively stationary signals without dramatic jumps 
in the time domain. 

m. SNR IN THE JOINT TF DOMAIN 

In this section, we analyze the SNR in the joint TF domain for the 
short-time Fourier transform, where the SNR defined in (2.4) is used. 
In order to do so, we first describe a multicomponent signal model. 

A. Multicomponent Signal Model 

Throughout the rest of this paper, we use the following multicom- 
ponent signal model: 

K 
j,(f> = £**(*)+ ,,(*),  o<(<r0 (3.i) 

k=l 

where we have the following assumptions 
1) t is the continuous-time variable and limited in the finite 

observation interval [0, To]. 
2) r/(f) is an additive white noise process with mean 0 and 

variance a1. It is not differentiable at any time t € [0,T0] 
and independent of xk(t), 1 < k < A. 

3) For each fc, 1 < k < A", Xk(t) is a monocomponent time- 
varying signal, i.e., 

xk(t) = A*(*)eJ*k(,) (3-2) 

where Ak{t) is the slowly varying amplitude envelope of 
xk(t), and 4>k{t) is the phase of xk{t). The magnitude of 
the first order derivative A'k{t) is upper bounded by Ak, i.e., 
\A'k{t)\ < Ak for a positive constant Ak, and the magnitude of 

1 
\Ryy{t + «,* + «)- Ryy(t, S)\ < C\u\ (3.3) 

for a positive constant C, where Ryy denotes the autocorrelation 
function of y(t). 

As a remark, the nondifferentiability assumption 2) of r](t) makes 
sense. An example of such processes is the Wiener process; see, for 
example, [13]. This assumption implies that any sampled segment 
of T/(t) in any time interval is a white noise and has flat Fourier 
spectrum. 

B. Short-Time Fourier Transform for Multicomponent 
Signals and SNR Calculations 

For each monocomponent signal x*(t) in (3.1), by l)-3), it can be 
shown that there exists e* > 0 such that for any s G (ek,T0 <- ek) 

xk(s +1) * Ak{s)e^M+<Mt\    t £ [-e*, e*] 

where the linear term A'k(s)t of t does not appear because of the 
"slowly varying" assumption in 3) on the amplitude envelope Ak(t). 
Since we have only finite many monocomponent signals xk(t) in 
(3.1), there exists e = min{et, 1 < k < K} >0 such that for any 
* € (e,T0 - e) and any k, 1 < k < K 

xk(s + t)*Ak(sW^++'^w,    t€[-e,e]      .(3.4) 

where t depends on the constants To, Ak, <t>k, and 1 < fe < A. 
With (3.4), at each time s € (e, To - (), we apply iV-point discrete 

Fourier transform (DFT) for the signal y(t) fort € (s-f ,s+j] with 
the sampling rate N/T for T = 2e. For convenience, we assume that 
JV is even. The DFT is 

ViV   qzz-N/2+l      X ' 

0<1<N-1   (3.5) 

where m is in the range such that (m - JV/2 + l)T/N > 0, and 
(m + N/2)T/N < To, i.e., 

^<-~<-$-\y 
The above Py can be decomposed into 

K 

k=l 

■ N — 2 
0<1<N-1, —— <m< $-l> 

(3.6) 

where PZk[m,l) and Pn[m,l] are defined for xk(t) and q(t) 

N/2 

e"2^ 1 ( T\ 
Vi¥   q=-N/2+l V ' 

o<J< 

1        C^        / T\    2-iii 

0</ < JV-1   (3.7) 

-N/2+1 

0<KN-1.   (3.8) 
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Since 77(f) is a white noise process, for each m, the Fourier spectra 
£(|P,,[7n,Z]|2) are flat over the whole frequency domain 0 < / < 
JV - 1, as mentioned in Section DI-A. This implies that the mean 
power of the noise spectrum Pn[m, I] is also <r2, which is the same 
as in the time domain. 

We next want to study the mean power of PZk [m, I] for the signal. 
Using (3.4) 

N/2 

PXk[m,t\a-=      £      Ak 
V* q=-N/2+l 

(4) 
x ei{^(m^)+*i('"*)<m+«)*-2^} 

N/2 .   ♦il.jll-l.l 
gj»-*—"V  

-N/2+1 

Therefore 

,R.K„«|*(4)|vi™(,-*fciE:).  «,„ 

By the assumption of distinct instantaneous frequencies <^(m^-) for 
1 < k < A", the Fourier power spectra \PXk [m, /]|2 are located at K 
different frequencies <i>'k(mN-)T/(2n),l <k<K. This implies 

tA(4>(,-*fcfii) 
k=l 

■ N 

(3.10) 

Therefore, for each fixed time s = m-fc, in the frequency domain 

max 
0<l<\-\ 

Elftjm,/]    >Jv£Lu(m|)|.       (3.11) 
k=\ k=l I ^ '  I 

Now, let us come back to the time domain signal y(m^). The noise 
mean power is a2. The signal power at each time t = m£ is 

|fM"*)R£K4)|)' 
S*'E|*(»|) (3.12) 

By comparing (111) with (3.12), it is clear that the following 
relationship between the SNR«/ in the joint TF domain of (3.6) and 
the SNRi in the time domain of (3.1) at the sampling points m^: 

SNRt   ~      A 
(3.13) 

where 0.5 comes from the SNR definition in (2.3H3.4). Therefore, 
as the window size T is small enough 

SNR, 
SNR, Mf> (3.14) 

Notice that the assumption of small enough window size T is 
equivalent to the assumption of fast enough sampling rate N/T. The 
derivation of (3.14) implies the following theorem. 

the constant in the SNR increase rate 0(N/K) 

20 40 60 80 100 120 140 
number N of OFT size (window size T.1/8 and sampiog rate-T/N) 

160 

Fig. 2.   SNR increase rate. 

Theorem 1: For a multicomponent signal with A" many monocom- 
ponents, the SNR in the joint TF domain with the short-time Fourier 
transform with the rectangular window of size T and the sampling 
rate N/T increases over the SNR in the time domain on the order of 
0(N/K) when the sampling rate is fast enough. Given the number 
A', this increase rate 0(N/K) is optimal. 

Proof: The first part has been proved by the above argument 
The optimality can be proved by taking Ak(t) = 1 and <j>k(t) = ckt

2 

for proper constants cjt ^ 0 for 1 < k < K and noticing that the 
inequalities in (3.9M3.12) become equalities in this case. D 

IV. NUMERICAL EXAMPLE 

For simplicity in computations, we choose the following two- 
component signal model: 

y(t) = e>8"  + eJ" '   + ij(t),    0 < t < 2 (4.1) 

where 77(f) is an additive white Gaussian noise with mean 0 and 
variance cr2 = 9. The window size for the short-time Fourier 
transform is 1/8. The following constant of the SNR increase rate in 
terms of the number of points JV of the DFT is illustrated in Fig. 2: 

SNR,/ 
SNR, 

L/E 
. / A- 

One can see that for this particular signal, 

——- -» 0.55-rr,    as JV -» 00. 
SNR, A 

(4.2) 

(4.3) 

From Fig. 2, one can also see that the constants of the SNR increase 
rate have large variance when the sampling rate is not large enough 
but almost become invariant when the sampling rate becomes large. 

V. CONCLUSION 

In this correspondence, we have quantitatively analyzed the SNR 
increase rate in the joint TF domain with the short-time Fourier 
transform over the SNR in the time domain for multicomponent 
signals in additive white noise. We have shown that the rate of the 
SNR increase is on the order of O(NfK), where 
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ABSTRACT. In this article, we construct two-dimensional continuous/smooth local sinusoidal bases 
(also called Malvar wavelets) defined on L-shaped regions. With this construction, one is able to construct 
local sinusoidal bases and lapped orthogonal transforms (LOT) on arbitrarily shaped regions. This work 
is motivated from and useful in object-based video coding, where a segmented moving object may have 
arbitrary shape and block transform coding of this object is needed 

1.    Introduction 

It is known that, in block DCT transform coding, one first decomposes an image on a rectangular 
region into 8 x 8 or 16 x 16 blocks and then does 8 x 8 or 16 x 16 DCT on each small block. Due to 
the truncation of an image in the block decomposition, the blocking effects with block DCT degrade 
the performance in decoding at a low bit compression ratio. To eliminate the blocking effects, the 
lapped orthogonal transform (LOT) has been developed by Malvar et al. [15, 16], where overlaps 
between adjacent blocks in the decomposition are used. In LOT, a smooth transition of the DCTs 
between blocks is performed and therefore the blocking effects can be eliminated, while LOT does 
not increase the total number of pixels in the transform domain. For applications in image coding, 
see also [1]. 

Coifman and Meyer [8] generalized LOT from discrete-time signals to continuous-time wave- 
forms with a general description for window functions. They constructed a family of smooth local 
sinusoidal bases, which are also called Malvar wavelets [18]. For more about local sinusoidal bases, 
see [1,3,4,5,8,9,10,13,17,18,19,22,23]. Further generalizations were made in recent literature, 
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see for example [1, 3, 4, 11, 13, 14, 17, 19, 20, 21, 22, 23]. In particular, two dimensional nonsep- 
arable smooth local sinusoidal bases were constructed in [22] on rectangular regions and in [23] on 

' hexagons. Discrete forms were discussed in [11,14, 20,21]. An important requirement for LOT is 
that the domain of an image must be rectangular. This, however, may not be true in object-based 
video coding [2, 6, 7,12]. In object-based video coding, one usually first segments moving objects 
from image frames and then codes the motion vectors and the segmented moving objects. There are 
two intuitive ways to code a segmented object. One is to mask an object using a larger rectangular 
window that completely covers the object and do block DCT/LOT for the image on the masked 
rectangular region (see Fig. 1). This way usually wastes bits of coding when the shape of an object is 
not regular due to the inclusion of redundant areas (see Fig. 1). The other is to code the boundary of 
an object and code the content inside the boundary separately. Although this way does not include 
redundant area, it does require block DCT/LOT to be applicable to images defined on an arbitrarily 
shaped region. 

redundant area 

r-*H u^ im ■ ■ h   l ■ ■ i   l ■ ■ r    i ^^^-         J 
r M 

mask 

segmented moving object 
FIGURE 1.    Segmented moving object and rectangular mask. 

Another way to code a segmented moving object is between the above two ways, which masks 
the object by using small rectangular blocks [see Fig. 2(a)]. With this masking method, the redundant 
area is clearly smaller than the one in Fig. 1. The question now is whether LOT can be implemented 
for the rectangular blocks in Fig. 2(a). To study this question, we decompose the mask in Fig. 2(a) 
into two parts: a rectangularly shaped region part as shown in Fig. 2(b) and a nonrectangularly shaped 
boundary region part as shown in Fig. 2(c). For the rectangularly shaped region part, the standard 
constructions apply. Thus, the question is reduced into whether LOT can be implemented for the 
domain shown in Fig. 2(c). We call the regions with the shapes in Fig. 2(c) L-shaped regions. As 
long as LOT is implementable on L-shaped regions in Fig. 2(c), LOT is implementable on all masks 
shown in Fig. 2(a) which cover arbitrarily shaped regions. Based on this observation, in the rest of 
this article we focus on local sinusoidal bases/Malvar wavelets/LOT on L-shaped regions shown in 
Fig. 2(c). 

This article is organized as follows. In Section 2, we construct continuous/smooth local sinu- 
soidal bases on L-shaped regions. In particular, we present a set of conditions on two-dimensional 
window functions for two-dimensional continuous/smooth local sinusoidal bases on L-shaped re- 
gions. The conditions are different but similar to those in [8, 22,23]. In Section 3, we present some 
numerical examples of both window and local sinusoidal bases on L-shaped regions. In Section 4, 
we briefly mention the construction of LOT on L-shaped regions, i.e., the discrete version of local 
sinusoidal bases on L-shaped regions. We also present an application of LOT on L-shaped regions 
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segmented moving object 

transform domain 
decomposition 

(b) (c) 

rectangular regions L-shaped regions 

FIGURE 2.    Segmented moving object and nonrectangular mask. 

in image compression. In Section 5, we conclude by discussing local sinusoidal bases on mixed 
regions of L-shaped and rectangular regions. 

2.    A Theory for Local Sinusoidal Bases on L-Shaped Regions 

In this section, we build a general theory for the construction of local sinusoidal bases on 
L-shaped regions. We first describe the problem precisely. 

An L-shaped region A to work on in the following is shown in Fig. 3(a). The region A consists 
of three small rectangular regions: A\, Ai, and A3 as shown in Fig. 3(a). In what follows, small 
bold English letters, such as x = (jci, xi), y = (yi, yi) for real */. W. ' = 1.2, always denote two- 
dimensional vectors in R2. The goal of this article is to build smooth local sinusoidal bases/Malvar 
wavelets/LOT defined on the L-shaped region A from sinusoidal bases on Aj. 

Let /},*(x), k e Z, be an orthonormal basis defined on Aj for the signal space L2(Aj), 
j = 1, 2, 3, where L2(B) denotes all square integrable functions on the region B. A trivial method 
for forming an orthonormal basis for L2(A) is simply to use the truncation window XAyOO. 1 for 
x € Aj and 0 otherwise, and form //.ttox^to'./ = L 2, 3, fc € Z, x e A. This is equivalent to 
using block DCT when //,* are products of two cosine functions with discrete forms. Clearly, the 
basis elements /),* (X)XAJ 00 mav nave discontinuities which may cause blocking effects as discussed 
in the Introduction. The purpose of the rest of this article is to construct continuous/smooth basis for 
L2{A) from continuous/smooth local bases //,* defined on Aj, j = 1,2,3. The basic idea to achieve 
the goal is similar to previous work: include overlaps between these three rectangular regions Aj 
and replace the truncation window XAj with some better designed windows Wj. Before going to the 
details, we define some notations. 
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Ik 

b,               Al 
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 B,  0                  ai    \{ 

A3 
b., 

A 
(b) 

FIGURE 3.    An L-shaped region A. 

2.1 Notations 

We divide the L-shaped region A in Fig. 3(a) as follows [see Fig 3(b)]: 

Ai    =    {x = (x\,X2) : aQ <x\ <a\, b0 <x2 <b\) 
A2    =    {x = (x\,X2): a-i<xi <ao,bo<X2<b\} 

A3    =    {x = (xi,X2): a-i <xi <ao, b-\ <x2<bo}, 

where «o = bo = 0, a-\,b-\ < 0, and a\, b\ > 0. 
The overlaps between the three rectangular regions A; are shown in Fig. 3(b), which are 

bounded by the dotted lines. The symbols e and S denote the single width of the overlaps between 
Ai and A2 in the x\ direction, and between A2 and A3 in the x2 direction, respectively, shown in 
Fig. 3(b). The overlaps consist of four nonoverlapped regions 5/, Z = 1,2, 3,4, shown in Fig. 3(b): 

B,    =    {x = (xi,x2) :  -e < x\ <a0, S < x2 <b\) 

U {x = (x\,X2) :  -e < xi < a0, -Sxi/e <x2<8] 

B2    =    {x = (xi,x2):  (~xi,x2) G B\} 
Bi    =    {x = (xi,x2): a-i <xi <-€, b0<X2<S] 

U{x = (*i,x2) 
:  -e <xi <a0, b0<X2< Sxi/e} 

B4    =    {x = {x\,X2) :  (x\,-x2) e B3} 

With these overlaps, the extended regions of Aj, denoted by Äj shown in Fig. 4, j = 1,2,3, are: 

Äi = Bi U Ai, Ä2 = B2 U 54 U A2, and A3 = B3 U A3. 

2.2 Theory for Construction 

In order to construct continuous/smooth orthonormal bases for L2(A) from local orthonormal 
bases /y,t(x), k € Z, for L2(Aj), j = 1,2,3, first we need to extend /),*(x) from the rectangular 
regions Aj to the L-shaped region A and then construct window functions Wj to window the extended 
local bases. We denote the extended bases of /;,* as //,*, where odd and even extensions are also 
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•A, 
FIGURE 4.    Extended regions of Aj. 

used as follows. 

/uOO    = 

/2.*(X)     =      ' 

A* 00   = 

/u(x), x € Ai, 
fi.k(-xi,x2),   x = (xi,x2) e B\, 
0, x € A butx i Ä\ , 

/2,*(x). x € A2, 
-fz.k(-x\,X2), \ = (xi,x2) e B2, 
-f2,k(xu-x2), x = (xi,x2) € B4, 
0, x € A but x f k2 , 

/3,*(x), x e A3, 
/3,* (*i. -x2),    x = (*i, x2) e B3, 
0, x € A but x £ A3 , 

(2.1) 

(2.2) 

(2.3) 

where k 6 Z. Clearly, fj,k(x). k 6 Z are supported on the extended region A7- of A;-, 7 = 1, 2, 3. 
The conditions on window functions Wj are the following. 

(a) 

(b) 
(c) 

(d) 

W,(x) = 1 forx 6 Ai butx i B2, 
W2(x) = 1 for x € A2 but x $ B\ U B3, 
W3(x) = 1 for x e A3 but x g B4. 

Wj(x) = 0 for x € A but x f kj for j = 1.2.3. 

Wi(xux2) = W2(-xux2) forx = (.xuxi) e By U B2, 
W2U1,x2) = W3(Jti, -*2) forx = (xi,*2) e ß3 U BA. 
Wf(x) + W|(x) = 1 forx € ßi U 52, 
W2

2(x) + W3
2(x) = 1 for x e B3 U B4. 

The support of Wj is also Ä7- for j = 1,2, 3. 
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Finally, we form 

UJJAX) = fotoWjOQ, xeA,; = U,3,teZ, (2.4) 

and have the following theorem. 

Theorem 1. 
The functions ujik(x)forj = 1, 2,3, k e Z, andx € A,formanorthonormalbasisforL2(A) 

when fj,k(x), k eZ,x e Aj.form an orthonormal basis for L2(Aj), j = 1,2,3. 

Proof. The proofs of the orthogonality and the completeness of «/,* are similar to the ones for 
Malvar wavelets on rectangular regions studied in [22]. The details are omitted here.        D 

Remark. The odd and even extensions in (2.1) through (2.3) are also called the folding processes 
in [1, 3,4, 13, 17,19]. The window functions in (a) through (d) also can be characterized similar to 
the one-dimensional case studied in [4].        □ 

3.    A Family of Continuous/Smooth Local Sinusoidal Bases on 
L-Shaped Regions 

With the general theory in Section 2.2 we want to construct a family of continuous/smooth 
local sinusoidal bases on L-shaped regions. The local bases fj,k are separable sine bases as follows. 

/Ui.*2(*i.*2)    = 

flMM (*l>*2) 

/3,*i.*2(*l>*2)     = 

(*Hte) V(ai - ao) (b\ - bo) 

K*(*2+0t^)* 
sin   jr [ki + - I  

V(ao-a-i)(*i-*o)      V   V        2Ja-i-aoJ 

-sm \n \k\ + - J I 

(3.1) 

(3.2) 

(3.3) 

where k\,k2 =0,1,2, — 
Next, we construct window functions Wj(x). The idea for the construction is the following. 

We draw L-shaped lines in an L-shaped region A, which are parallel to the boundary of A (see 
Fig. 5). We treat these lines as one-dimensional domains where one-dimensional window functions 
are denned. The overlaps for these one-dimensional window functions are the intervals bounded by 
the dots, i.e., the intersections of the L-shaped lines with regions B\ U B2 and A3 U B4. There are 
two kinds of such L-shaped lines. For the first one, the overlaps are separated and for the second 
one, the overlaps are adjacent but do not intersect except at the boundaries (see Fig. 5). Notice that 
these lines are not closed, which is not like the case for hexagons studied in [23]. 

With the above idea, the following construction for window functions Wj follows. 
Step 1. 1-regions. 

Wi(x)   =    lforxe Aibutx^ 52, 
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i 
f 

The first kind lines 

The second kind lines 

FIGURE 5.    Window functions constructed from one-dimensional window functions. 

W2(x)    =    1 forx e A2 butx £ B{ U ß3 , 

W3(x)    =    1 for x e A3 but x £ B4 . 

Step 2. 0-regions. 
Wj(x) = 0 for x e A but x $ ÄJt j = 1,2,3 . 

Step 3. Overlapped regions. 
On the region B\ U Z?2. 

W2(x) = W2(xi,x2)    = 

On the region ß3 U Ä», 

W2(x) = W2(xl,x2)    =    I 

W3(x) = W3(jri,A:2)    = 

sin(^{xi-ao + e)), \x{\ < e, S < x2 < bx , 
sinteto-ao + :N) • M<f^,bo<x2<S, 
cos(^[xi-a0 + e}), \xi\ <€,S < x2 <bi , 

(&*l-flO + f«})   . I*ll<$«.*0<*2<«. COS 

(ft {x2 - fco + 5}) . \x2\ <S,a-i <xi <-e, 

(üÜf (** - fco + ^l) •     ^ - ^f18' -e - Xl - ao • 
cos (ft {x2 - bo + 5}) , \x2\ < 8, a_i < x, < -e, 

l«l < =§*■*, -e < x\ < a0 . ^1). 
For general one-dimensional window functions Wj (x), the construction of Wj (x) on the regions 

B\ U B2 and 53 U B4 can be obtained by replacing the above sin and cos with Wj properly. Notice that 
the above Wj (x) are continuous everywhere else inside A but at the origin and are basically generated 
from one-dimensional window functions for smooth local sinusoidal bases. With the construction 
of smooth one-dimensional window functions W)(JC), it is possible to construct smooth W/(x) in 

the sense of continuous 3*1+*2 Wj (x\, x2)/dxl' dx2
2 for some nonnegative integers ki and k2 when 

(JCI,X2)96(0,0). 
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Extend the local bases //,*,,*2 in (3.1) through (3.3) from the domains Aj to A according to 
the extension method in (2.1) through (2.3), which are denoted by //,*,,*2. Then, form «,-,*, ,*2(x) = 
fj,kiMx)wj&) for ; = 1,2,3 and Jti, ifc2 = 0,1, 2 Since functions /;,*,,*2(x) are zero at the 
origin, the windowed basis elements M/,*,,*2(x) are continuous in the L-shaped region A. The above 
window functions Wj clearly satisfy conditions (a) through (d). This proves the following result. 

Theorem 2. 
The above constructed functions K/,jt,,jfc2(x), j = 1,2,3 andk\,k2 = 0,1,2,, 

ous and form an orthonormal basis for L2(A). 

are continu- 

Next we want to see some numerical examples. Let a-\ = —2, ao = 0, a\ = 1, b-\ = —3, 
bQ = 0, b\ = 2, e = 0.5, and S = 1. Figures 6 through 8 show the window functions Wj(x) for 
;' = 1,2, 3, respectively. Figures 9 through 11 show the basis elements u/,i,i(x) for j = 1, 2, 3, 
respectively. 

Window Function W1 Its Contour 
2 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1.5 

-2 

-2.5 

-3 
-4   -2 

FIGURE 6.    Window function Wi (x) on A and its contour. 

4.    LOT on L-Shaped Regions and Application in Image 
Compression 

In this section, we want to briefly introduce the construction of LOT on L-shaped regions. 
Then, we show a numerical example that shows that the SNR of the LOT on L-shaped regions 
performs better than the one of the LOT on rectangular regions or the block DCT. 

The main difference between discrete-time and continuous-time local sinusoidal bases is that 
the variables x\ and xi are integers and the overlap sizes e and S are also integers. As an example 
of constructions of discrete-time local sinusoidal bases or LOT on L-shaped regions, we consider 
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Window Function W2 Its Contour 

-4   -2 

FIGURE 7.    Window function Wi(x) on A and its contour. 

Window Function W3 Its Contour 
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-2 
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-3 
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FIGURE 8.    Window function V/3 (x) on A and its contour. 
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Basis Element Its Contour 
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0.5 
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Ü M 

-3 
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FIGURE 9.    Basis u i, i, i (x) on i4 and its contour. 

Basis Element Its Contour 
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FIGURE 10.    Basis «2,i,i(x) on A and its contour. 
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Basis Element Its Contour 

-0.5 

-4   -2 

FIGURE II.    Basis «3,1,i(x) on A and its contour. 

FIGURE 12.    Discrete L-shaped region and the overlaps. 
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17.5 

17- 

16.5 

16 

15.5 

14.5 

13.51— 
02 

SNR vs. bpp before entropy coding 

-o-:DCT 

-*-: Rectangular-Shaped LOT 

-+-: L-Shaped LOT 

0.26 0.28 
bits/pixel 

0.3 0.22 0.24 

FIGURE 13.    SNR performance comparison. 

0.32 0.34 

FIGURE 14.    Mixed regions of L-shaped and rectangular regions.. 
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three 8x8 blocks shown in Fig. 12. The overlap sizes are e = S = 4. Notice that, unlike the 
continuous-time case, the intersection set between Bi U B2 and 53 U B4 in the discrete-time case is 
empty. The overlaped regions are shown in Fig. 12, too. The rest is similar to the continuous-time 
case by replacing the continuous variables x, = n,- + 1/2. For more details, see [20, 21, 22]. 

We have implemented a numerical example on applications of LOT on L-shaped regions in 
image compression. The test image has size 96 x 96 that is chosen for the convenience of the 
blocking. The signal-to-noise (SNR) ratio curves are shown in Fig. 13. One can clearly see the 
improvement of the LOT on L-shaped regions over the LOT on rectangular regions. 

5.    Conclusions 

In this article, we have constructed continuous/smooth local sinusoidal bases/Malvar wavelets 
on L-shaped regions, which is motivated from object-based video coding. It is not hard to generalize 
the construction for mixed regions of rectangular and L-shaped regions, such as Fig. 14 with solid 
lines. An important point for the construction is the design of overlaps. For the region shown in 
Fig. 14, an overlap design is also shown with dotted lines. In this article, we use the construction 
for L-shaped regions and the separable construction or nonseparable construction studied in [22] for 
rectangular regions. Notice that the construction of continuous/smooth local sinusoidal bases at the 
most outside boundaries does not include any overlaps. This approach has been recently used in [24] 
for image compression. 
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A New Prefilter Design for 
Discrete Multiwavelet Transforms 

Xiang-Gen Xia, Member, IEEE 

Abstract—In conventional wavelet transforms, prefiltering is 
not necessary due to the lowpass property of a scaling function. 
This is no longer true for multiwavelet transforms. A few research 
papers on the design of prefilters have appeared recently, but 
the existing prefilters are usually not orthogonal, which often 
causes problems in coding. Moreover, the condition on the pre- 
filters was imposed based on the first-step discrete multiwavelet 
decomposition. In this paper, we propose a new prefilter design 
that combines the ideas of the conventional wavelet transforms 
and multiwavelet transforms. The prefilters are orthogonal but 
nonmaximally decimated. They are derived from a very natural 
calculation of multiwavelet transform coefficients. In this new 
prefilter design, multiple step discrete multiwavelet decomposi- 
tion is taken into account Our numerical examples (by taking 
care of the redundant prefiltering) indicate that the energy com- 
paction ratio with the Geronimo-Hardin-Massopust 2 wavelet 
transform and our new prefiltering is better than the one with 
Daubechies DA wavelet transform. 

I. INTRODUCTION 

NOW THAT single wavelet transforms are well- 
understood, multiwavelets recently have attracted much 

attention in the research community; see, for example, 
[l]-[20], [26]-[32], where several wavelet functions 
and scaling functions are used to expand a signal. The 
multiwavelet functions constructed by Geronimo et al. [2]-[4] 
have more desired properties than any single wavelet function, 
such as short support, symmetry, and smoothness. Although, 
in theory, they look more attractive than single wavelets, 
not much more advantages in practical applications over 
single wavelets have been found so far. In this author's 
opinion, the main reason behind this fact might be because of 
their improper discrete implementations. For single wavelet 
transforms, the discrete implementation automatically follows 
from their multiresolution structure, i.e., tree-structured two- 
channel filterbanks. In the tree-structured filterbank, lowpass 
and highpass filters are explicitly used, which is tight with 
the lowpass and the bandpass properties of the scaling and 
wavelet functions, respectively. Although, for multiwavelet 
transforms, the discrete implementation also follows from 
their multiresolution structure, the tree-structured filterbank 
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becomes a tree-structured vector filterbank [1], [8] (or time- 
variant filterbank [13]). For a tree-structured vector filterbank, 
the lowpass and the highpass properties for the two vector 
filters are not as clear as those for the two filters in single 
wavelet transforms. It has been found in [1], [16]—[17] that 
in order to have a reasonable decomposition for discrete 
multiwavelet transforms, prefiltering is necessary. A prefilter 
design method was introduced in [1], [16]—[17], where the idea 
is based on the computability of the multiwavelet transform 
coefficients from uniformly sampled signals. Moreover, an 
interpretation of the "lowpass" and "highpass" properties for 
vector filters was introduced in [1] for the prefilter design 
criterion. The criterion is, however, only good for the first step 
discrete multiwavelet transform decomposition. The prefilters 
designed with this method may be nonorthogonal, which 
might kill the gain of the energy compaction in the transform 
domain after the decoding is performed. In [31], a different 
approach was proposed for perserving the orthogonality by 
using the approximation order criterion. In [32], balanced 
multiwavelets were studied, where prefiltering for these kinds 
of multiwavelets is not necessary, but other properties, such 
as the short supportness and the smoothness, are not as good 
as the GHM multiwavelets. Notice that in [1] and [8], it was 
also mentioned that when the "lowpass" filter H(u>) satisfies 
H(0) = 7, prefiltering is not necessary. 

In this paper, we introduce a new prefilter design by 
combining ideas in single wavelet transforms and multiwavelet 
transforms as follows. We first construct a function <f>(t) with 
the lowpass property, i.e., its Fourier transform <j>(u>) is 1 
at u = 0, or (£(0) = 1, from the multiscaling functions 
and their translations such that <f>(t — n), n G Z form an 
orthonormal set. Notice that the function 4> does not have to 
be a scaling function since the nested property is not required, 
i.e., a dilation equation may not be satisfied. Due to the 
lowpass property, a signal f(t) can be well approximated by 
a linear combination of 2J/2<f>(2Jt - n), n € Z for a large J; 
meanwhile, /(£) can also be well approximated by a linear 
combination of the multiscaling functions and their trans- 
lations due to their multiresolution approximation property. 
Because of the lowpass property of <f> and the orthogonality 
of <f>(t - n), the coefficients in the linear combination of 
2J/2<j>(2Jt - n), n € Z are proportational to f(n/2J); see, 
for example, [23]-[25], and [35]. The conversion between 
these two approximations naturally suggests a prefiltering 
for computing the multiwavelet transform coefficients at the 
highest resolution (or called approximation coefficients) from 
the samples f(n/2J) of the signal /. Then, the rest of 

1053-587X/98S10.00 © 1998 IEEE 
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the multiwavelet transform coefficients (the lowest resolution 
coefficients and the detailed coefficients) follows from a tree- 
structured vector filterbank [1], [8]. We will see later that 
the lowpass condition imposed on the function <f> is strongly 
related to the lowpass condition imposed on the combined 
filters of the prefilters and the multiscaling functions, which 
also relates to the one imposed on the combined filters of 
the prefilters and the cascaded vector filterbanks, i.e., multiple 
steps of the discrete multiwavelet transform decompositions. 
Notice that the above prefilter structure was first used in 
[30], but neither the lowpass condition on the function <j> nor 
any rationale for introducing such <f> was mentioned. Instead, 
in [30], signal-dependent optimal prefilters, in terms of the 
energy compaction criterion, were designed. The drawbacks 
are 1) that the computational load is high and 2) the signal 
dependency. In this paper, we systematically study the prefilter 
structure and its rationale. The prefilters are signal independent 
and orthogonal, and they only depend on multiwavelets. 

II. APPROXIMATION OF LOWPASS FUNCTIONS USING 

MULTISCALING FUNCTIONS AND NEW PREFILTER STRUCTURE 

In this section, we want to motivate a new prefiltering for 
multiwavelet transform coefficient computation by approxi- 
mating a lowpass function using multiscaling functions. To 
do so, let us first briefly review multiwavelets and matrix 
dilation equations. For more details about multiwavelets, see, 
for example. [l]-[20] and [26]-[32]. 

Consider .V compactly supported scaling functions <f>i(t), 
I - 1,2 A' and their corresponding N mother wavelet 
functions vi(t). I = 1.2....,TV, where all the translations 
4>i(t - k). k € Z. / = 1,2, ...,N are mutually orthogonal, 
and riH.j.k = V2vi{Vt - k), j, k e Z, I = 1,2,..., N form 
an orthonormal basis for L2(R). Let H(w) and G(w) be their 
corresponding A' x N matrix quadrature mirror filters with 
A' x A impulse response constant matrices Hk and Gk, k € Z, 
respectively. Let 

*(t) = (0,(0 4>y(t))T.    *(*) = (Mt),■ ■ -Mt))T. 

Then, we have the following matrix dilation equations. 

k 

*(0 = 253Gfc*(2t-fc). (2.2) 
k 

The orthogonality implies 

H(w)H+(u;) + H(w + 7r)Hf(w + v) = IN       (2.3) 

.   G{w)G1{u>) + G{u + n)G\uj + ir) = lN        (2.4) 

H(w)Gf(w) + H(w + TT)G V + *) = 0N       (2.5) 

where * means the complex conjugate transpose, and IM 

and 0^ denote the N x N identity and the all-zero matrix, 
respectively. 

For each fixed j G Z, let Vj be the closure of the linear span 
of <f>u,k = V'24>i{2H - k), I = 1,2,..., N, k e Z. Then, the 
spaces Vj, j € Z form an orthogonal multiresolution analysis 
for L2(R). 

1559 

Let / e Vj; then 

N 

f(t) = Y,Y,ci'j'k<t>i'j'kW 
N 

= ^>2Y2 ci'j°<k't>i'jo>k^ 
i=i fcez 

N 
+ J   J   $2 dij.fcVUfcW 

1=1 Jo<j<Jk€Z 

where Jo < J, and 

cij,k = Jf(t)<t>uAt)ti 

(2.6) 

(2.7) 

and 

Let 

and 

Cj,fc = (Cl,j,fc,...,CjV,j,fc) 

dj,k = (ditj,kT--idN,j,k)  • 

Then, by the matrix dilations (2.1)-(2.2) 

Cj-l,fc = >/2.^gnCj,2fc+n 
n 

d_,-l,Jt = V^y^GnCj^k+n 

and 

Cjn = V2^(HkCj-i^k+n + Gfcdj_i,2fc+n) 

(2.8) 

(2.9) 

(2.10) 

Thus, to determine the multiwavelet transform coefficients 
cJo,k and diifc for J0 < j < J, k 6 Z from /, it is good 
enough to determine the coefficients cJ<k for fc € Z from /. 

Unlike single wavelets, where cj,k is proportional to the 
samples f(k/2J) when J is large enough due to the lowpass 
property of a single scaling function, the determination of cj,* 
for multiwavelet transforms from the samples of f{t) is not 
trivial. When the multiscaling functions have the interpolating 
property, the determination was given in [1] and [16]—[17]. 
Furthermore, a necessary and sufficient condition for the 
solvability of cj,fc from the samples of / was also given 
in [1]. The relationship between the samples of / and the 
coefficients cj>fe automatically provides a prefiltering for the 
multiwavelet transform computation from the samples of /. 
For more details, see [1]. Unfortunately, the prefiltering based 
on this relationship is usually not orthogonal, which seems to 
limit the gain in the compression applications. 

In order to present our new prefilter design method, i.e., a 
new relationship between the samples of / and cj,k, let us look 
at the conventional wavelet transform coefficient computation, 
which is usually referred as the Mallat algorithm. 

Let (f>(t) be a single orthogonal scaling function. Then, for 
any signal f(t), there exists J > 0 such that f(t) can be well 
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approximated by 4>Jtk(t) = 2J'2<j>{2Jt - k), k € Z, i.e., 

/(<)«X)cJ>fc^,fc(t) (2.11) 
k 

where 

cj,k = Jf(WjMt)dtocf(Jp). (2.12) 

The relationship oc in the above formula is because of the 
lowpass property of <f>(t), i.e., 4>(0) = 1, see, for example, 
[23]-[25] and [35]. The rest of wavelet transform coefficients 
can be calculated recursively from cj^- The key point for the 
validation of (2.11)—(2.12) is that the scaling function <j>(t) has 
the lowpass property, and <j>{t — k), k G Z are orthogonal. 

Motivated from the above observation, we now want to 
construct a function </>(t) from the multiscaling functions 4>i(t), 
l = l,2,...,N such that <j>{t) has the lowpass property, and 
its translations 4>(t - k), k € Z are orthogonal to each other. 
Notice that such <j>{t) may not be a scaling function because 
it may not satisfy any dilation equation. As long as 4>{t) 
has the lowpass property and the orthogonality, the properties 
(2.11H2.12) hold for a signal /. 

Let - 

By the orthognality of <f>i(t - n), I = 1,2,..., N, n € Z, it 
is not hard to see that 

Y^ 4>h (w + 2jrn)#a (u + 2irn) = 6(h - l2). 
n 

Therefore 

n 1=1 

This implies that the orthogonality of <f>(t — n), n G Z is 
equivalent to 

jv 

J2\Mu)\2 = 1. (2.18) 
i=i 

In conclusion, we have proved the following lemma. 
Lemma 1: A linear combination </>(t) in (2.13) of multi- 

scaling functions <f>i(t) and their translations has the lowpass 
property and the orthogonality of its translations if and only 
if the properties (2.16) and (2.18) hold. 

We now assume <f>[t) in (2.13) satisfies the lowpass property 
(2.16) and the orthogonality (2.18). For a given signal f(t), 
by the lowpass property of 4>{t), there exists a J > 0 such 
that (see, for example, [35, Prop. 5.3.2, p. 142]) 

N 

4>(t) = J2Y/al[n]<f,l(t-n) (2.13) 
1=1    n 

where <n[n] are real constants. Then 

N 

where 

4(w) = E M")4>i(u) 
1=1 

where 

AI(UJ) = y^ai[n]e" jnw 

(2.14) 

(2.15) 

n 

bn= f f(t)2J/2<f>(2Jt-n)dt. 

(2.19) 

The lowpass property implies 

N 

^(0) = 53^,(0)^(0) = !. (2.16) 

An estimate of the difference 

/(*)-£6„2J/2<A(2J*-n) 

is given in the Appendix. Notice that the only condition on 
<f>(t) for the relationship (2.12) to hold is the lowpass property, 
i.e., <^(0) = 1. Therefore, similar to (2.12), we have 

&„oc/(^-J,    for large J. 

1=1 

The orthogonality of 4>{t - n), n € Z is equivalent to 

52|<Ku> + 27m)|2 = l. (2.17) 
n 

Write out the "right-hand side of (2.17) as 

£|0(ü; + 27rn)|2 

= £(X>/,M<M" + 2™)] 
n     \/,=l / 

N     N 

= E 53i4j1(o;)il,,
!|(w)530,1(u; + 2irn)0j;(w + 2ffn). 

i,=l/2 = l n 

Without loss of the generality, we may assume J = 0 for 
simplicity. Then 

f(t) « Y bn<i>{t - n)   and   6n oc f(n). 
n 

From (2.13) 

/(t)«E *»*(*-») 
n 

JV 
= E 6n E E°'tm^i(* - " - m) 

n J=l   m 

= EE(E6*-»°'MJ^(*-*)- 
1=1    l     \m / 

This implies that 

Yh-mai[m] » c/,o,fc,    J = l,2 JV.fcgZ     (2.20) 
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Fig. 1.   New prefiltering: Decomposition. 

<«■ 

^ 

41 
^ * 

-l,k 

4- H'M 

4- G^fa) 

d-i.: 

Fig. 2.   New prefiltering: Reconstruction. 

fW 

A>)-^^ 

A2 fa) 

A>) 

where 6n a /(n). n € Z. The above result (2.20) suggests 
the following new relationship, i.e., a new prefilter, between 
the samples }{n) of f{t) and the multiwavelet transform 
coefficients c/.o.jt 

ct.o.k = ^/(A;-m)oj[m] (2.21) 

which is shown in Fig. 1. 
By the orthogonalities of multiwavelets (2.3H25) and 

prefilters (2.18), the reconstruction can be shown in Fig. 2. 
The difference between the above prefilter bank and the 

prefilter bank proposed in [1] is the following. The above 
prefilter bank is not maximally decimated, i.e., redundancies 
are introduced. Actually, the number of coefficients in the 
transform domain is increased by N times. The prefilter bank 
in [1] is, however, maximally decimated, and no redundancy 
is introduced. We might want to ask, since we are usually 
interested in reducing the redundancies, why we need to 
introduce redundancy here. The answer here is two-fold. 
First, proper overcomplete (or redundant) transforms plus 
vector quantizations might perform better than nonredundant 
transforms. This suggests that including redundancy in the 
transform might not be a bad idea due to its better tolerance of 
noise than nonredundant transforms. Second, from our numeri- 
cal examples, the energy compaction with this new prefiltering 
is better than the one with Daubechies £)4 wavelet transform 
after the nonmaximality of the decimation in prefiltering has 
been taken into account. 

Notice that the energy of /(n) is preserved after the whole 
discrete multiwavelet transform in Fig. 1 is performed due 
to the orthogonalities of the multiwavelet transform and the 
prefilter bank, although the prefilter bank is nonmaximally 
decimated. 

Motivated from the above prefiltering and the one in [1], 
we propose the following general prefiltering for discrete 
multiwavelet transforms, which is shown in Fig. 3, where 
1 < K < N and the pre/post filterbank shown in Fig. 4 
have the perfect reconstruction property. Specifically, when 
the filterbank in Fig. 4 is paraunitary, the prefiltering in Fig. 3 
is orthogonal. 

m. PREFILTER DESIGN AND EXAMPLES 

In this section, we first study the general N wavelet case 
and then study the case of N = 2. Finally, we look at two 
examples. One is the Geronimo-Hardin-Massopust 2 wavelet 
prefilter design, and the other is the prefilter design for one of 
the 2 wavelets obtained by Chui and Lian in [20]. 

A. General N Wavelet Prefilter Design 

Although, for the general prefilter bank in Fig. 3 (i.e., 
general K), the interpretation in the previous section does not 
hold, the design of a prefilter bank Ai{u) can be done using the 
same criterion given in [1], where K = N. In the following, 
we focus on the case of K — 1 and use the interpretation in 
Section II to design the prefilter bank At(u). Moreover, we are 
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Fig. 3.   General prefiltering: Decomposition and reconstruction. 

f(n) A1*tf) Kf— K| Bit*) 

A2 fa) Kt^K| B,*fa) 

ANe.) K^    ► K A   -J B^fa 
t   g(n) 

Fig. 4.   Pre/post filterbank. 

only interested in designing FIR prefilter banks. The lowpass where ur = (uri,... ,uwv) and the norm of the vector ur 

and the orthogonality conditions (2.16) and (2.18) will be used, is 1, i.e., 
Due to its orthogonality, any FIR prefilter bank Ai(u) can N 

be factorized as (see, for example, [33], [34]) V"* In  I2 = 1 

/Ai(u)\ ^i(O)^ 
1=1 

\AN{<*)J 

(3.1) 

W(0)/ 

From the matrix dilation equation, we have 

= H(0) 

where W(0)7 

(3.4) 

W(0)/ 
AT 

E^'(°)i2 = 1 
i=i 

(3 2) When **(w) is know11' *e vector (0(0),..., 4>N{0)) can be 
solved. Then, the orthogonality and the lowpass property 
(2.16) and (2.18) are equivalent to 

and N N 

UT{w) = IN + (e->" - l)u+ur (3-3) 
J) |il,(0)|2 = 1   and    £A,(O)0,(O) = 1.        (3.5) 
i=i /=i 
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The only constraint for the parameters uri is that they need 
to be of the unit norm for r = 1,2,..., p. The parameter p 
determines the prefilter length and is called the order of the 
prefilter (AI(LJ))I=I,2,...,N- When there is no Ur{u) term in 
(3.1), we set p = 0, i.e^, the order of the prefilter is zero. 

Additional conditions may be imposed on the above param- 
eters. An important one is that the combined filters of Ai(w) 
and H(LJ) need to be lowpass filters, and the combined filters 
of Ai{ui) and G(w) need to be highpass filters. The reason 
for this condition is the same as what was proposed in [1], 
i.e., we need to keep the "lowpass" part and decompose it 
again and again but quantize the "highpass" part and therefore 
keep the "highpass" part as small as possible. This means the 
"highpass" part needs to be the high-frequency part; otherwise, 
it will have a lot of energy. 

By thinking of the multiscaling vectors as the cascaded 
version of the "lowpass" vector filter H(w), the new lowpass 
property (2.16) for the function <f> means the lowpass property 
for the combined filters of the prefilters Ai(u) and cascaded 
vector filters H(u>). Therefore, the above two lowpass condi- 
tions [the new one (2.16) and the old one in [1]] somewhat 
guarantee the lowpass properties of the all-approximation 
multiwavelet transform coefficients Cj,* .for Jo < j < 0. 
The old lowpass condition in [1] is for the lowpass property 
of the first step decomposition c_i,jt and the new lowpass 
condition in this paper is for the follow-up decompositions 
Cj.fc for J0 < j < -1- The old lowpass condition in [1] can 
be stated as follows. 

There are TV combined filters of Ak(ui) and H(w) and TV 
combined filters of Ai(u>) and G(w). They are 

n-nHmp to dsxnpcse 

H,(w) = Y, Hi.k(u)M<*),    / = 1,2,..., TV (3.6) 
fc=i 

and 

CiM^JG^MiltM,    Z = 1,2,...,TV       (3.7) 
fc=i 

respectively, where H(u;) = (Ht,k(u))NxN> and G(a>) = 
(G/,fc(u/))jvx.v. Then, the prefiltering, the first step multi- 
wavelet transform decomposition, and their combined filters 
can be shown in Fig. 5. 

The lowpass property on Ht(v) is 

N 

Y,HiA*)M*) = 0,    * = 1,2,...,TV.       (3.8) 
*=i 

The highpass property on G/(w) is 

N 

£G,,fc(0)iM0) = 0,    /=1,2,...,TV.        (3.9) 
it=i 

In conclusion, the above four conditions [i.e., (3.1), (3.5), 
(3.8), and (3.9)] need to be imposed on the prefilter design 
given a multiwavelet. 

m 
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G^) 
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 I^HOJt 

\ 
cjsntizB 

Fig. 5.   Combined filters of prefilters and multiwavelet filters. 

B. Theory for 2 Wavelets 

Since there always exists a solution for (3.4), there exist 
two real constants a and b such that 

a<£i(0) + 6<£2(0) = 0. (3.10) 

Without loss of generality, we may assume <£i(0) = c<£2(0) 
for a real constant c. Then, by (3.5) 

cAi(0) + A2(0) = 1/^(0) = i,    or   A2(0) = x - oAi(0) 
(3.11) 

and 

(1 + c2)Al(0) - 2xcAi(0) + x2 - 1 = 0,    or 

Mo) = YT*  (3.12) 

where x is an arbitrary constant. This implies that there always 
exist solutions for (3.5). 

When matrix G(0) has full rank, the only solution for (3.9) 
is J4I(0) = .A2(0) = 0, which does not satisfy (3.5). 

When matrix G(0) does not have full rank, there exist 
solutions for Aj(0), I = 1,2 in (3.9), i.e., there exist two 
real constants d and e such that 

dAi(0) = eA2(0). (3-13) 

Clearly, there exists a solution for Ai{0) and A2(0) in 
(3.11M3.13). 

Now, the only condition left is (3.8). Although the existence 
of the zeroth-order prefilter 04iH,.42(w)) = {Ai(0),A2(0)) 
in (3.8) depends on the form of (;4i(0), A2(0)) and H(0) (we 
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will see later that there does not exist any zeroth-order prefilter 
that satisfies (3.8) for the GHM 2 wavelets, but there does exist 
for one of the 2 wavelets obtained by Chui and Lian in [20]), 
we may analyze first order prefilters. In this case 

A2(u) -(* 
+ ^-Ksinl)(COS*'Sinö)) 

MI(ü)\ 

{Mio)) 
and 

! (TT) \ _ /- cos 29    - sin 29 \ (Ax (0) \ 
2(w)y  ~  \-siu20 COs29 ) \A2{0) ) 

where 9 is an arbitrary angle. 
For the same reason as before, when matrix H(7r) has full 

rank, there are no solutions for (3.5) and (3.8). Therefore, we 
assume that matrix H(ir) does not have full rank. Then, there 
exist two real constants u.v such that 

UA\{TT) + vA2(w) = 0. 

By (3.14) 

(vA2{0) - uA1(0))cos(29) = (uA2(0) + vAi(0))sin(26). 

Thus, there exists an angle 6 such that the above equation 
holds. This proves the following theorem. 

Theorem I: There exists a first-order prefilter 
{A\(u}). .42(w)) that satisfies all conditions [i.e., (3.1), 
(3.5), (3.8), and (3.9)] if and only if none of matrices H(7r) 
and G(0) has full rank. 

As pointed out by one of the referees of this manuscript, the 
condition in the above theorem always holds if a constant can 
be expressed by a linear combination of the translates 4>\{t — k) 
and <t>2(t — k) of two scaling functions <f>i{t) and 4>2{t). 

C. Design Examples for the GHM 2 Wavelets 

We first warn to see the Geronimo-Hardin-Massopust 2 
wavelets with the following matrix impulse responses of the 
vector filters H(u») and G(u;), respectively. 

-3/20y 

0     \      „  _ (      0 0\ 
-3/20/'       3~ V-v/2/40   0/ H2=( 

3/10 
•A/2/40 

0 
9x/2/40 

H  - (  3/1° 1 ~ ^x/2/40 
0 

1/2 ) 

and 

.,       f-y/2/40 
,0 = V -l 

= f9v 
/20 

9N/2/40 

9/20 

-3/20   \ 
-3\/2/20/' 

-3/20 \ 
3\/2/20/' 

r       /972/40 
Gl~{ 9/20 r) 

G3 

In this case 

H(0) = ( 

G(0) = ( 

From (3.4) 

2\/2 
5 

2>/2 
5 
0 n 

/-v^/40   0\ 
\   1/20      0/ 

*i(0)->/2fc(0) = 0. 

Solving (3.4) and (3.5), we have 

xV2 ± \/3 - x2 

M0) and   Ai(0) 
^ r2 

(3.16) 

where a; is a real constant with \x\ < \/3. The condition (3.9) 
(3.14) -implies 

\Z2A2{0) = i4i(0). 

Therefore, we solve for Ai{0) as 

v/6               \/3 
^(0) = -^-    and   A2{0) 

(3.17) 

Ur{fj) = h + (e"jl 

-'>(:;)<- Ur2) 

with u^i + u^2 = 1 for two real constants u,i and ur2- It 
is clear that (3.8) implies that the order p in (3.17) must be 
greater than or equal to 1. Since matrices H(7r) and G(0) 
do not have full rank, by Theorem 1, there exists a first-order 
prefilter satisfying the conditions. Let us see what it looks like. 

"(flä (3.18) 

where 0 is an angle. Thus 

(3.15) 

(M*)\ _ (-COS29    -sm29\(s/2\_l_ 
\A2{*)) ~ \-sin29       cos29) \ 1 ) y/s' 

Therefore, (3.8) implies 

1 \/2 
- \f2 sin 29 + cos 20 = 0,    or   0=-arctan—.   (3.19) 

This proves the following theorem. 
Theorem 2: The prefilter in (3.18) with the d in (3.19) 

satisfies all conditions we want, including the following. 

1) the lowpass property of <f>(i), i.e., 0(0) = 1; 
2) the orthogonality of (j>{t - n), n G Z and the orthogo- 

nality of the prefilter bank Ai(u) for / = 1,2; 
3) the lowpass property of the combined filters Ht(u) for 

/ = 1,2 of At{u), I = 1,2, and H(w);' 
4) the highpass property of the combined filters G/(w) for 

/ = 1,2 of AI{LJ), I = 1,2, and G(w). 
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As mentioned earlier, the zeroth-order prefilter, i.e., without 
any term Ur(u>) in (3.18), does not satisfy the above property 
3), although it satisfies all the rest, i.e., 1), 2), and 4). Notice 
that the above zeroth-order prefilter was first used in [16] 
and [17]. When the order p of a prefilter increases, better 
lowpass and highpass combined filters Ht(w) and Gi(u), 
respectively, may be expected, and the length of a prefilter 
also increases. The final version of the two prefilters in (3.18) 
can be expressed as 

V2 
AI{UJ) = -j=sm t 

yl2(w) = - 

+ 

.1 

2v/3 
sin 20 

2v/3 
sin 26   e 

-ju, 

-Fsin2ö + -pC0S2ö 

1 1 
—=. sin 29 + —psin' 
v/6 yß 

.). -JU> 

(3.20) 

(3.21) 

D. Another Design Example 

The second example of 2 wavelets is obtained by Chui and 
Lian in [20]. The matrix impulse responses are 

1/   1/2 1/2    N       „  _ 1/1      0 
~2V0    1/2 Hn = 

1/2 1/2    \ 
■y/7/4    -V7/4J' 

Hi 

Ho = - 
_ If 1/2       -1/2 \ 

2V>/7/4     -y/7/Aj 

and 

_l/-l/2    -l/2\      G       1/1 

°~Hi/4 i/4 y     2V° 
Go = 

-1/2 

/4 

-1/2 
-1/4 

■1/2 
1/4 

1/2 
1/4 

v/W 

The multiscaling and multiwavelet functions are supported in 
[0.2] and have symmetry and certain smoothness. It is clear 
that 

H(0) = 

G(0) ■K 

1 

")■ 

0 

2 

Conditions (3.9) and (3.5) imply that Ax{Q) = ±1 and 
A2{0) = 0. In this case, the zeroth-order (Ai{u),A2(u>)) = 
{A1(0):A2(0)) = (1.0) already satisfies (3.8). As pointed 
out by one of the referees of this manuscript, this result 
holds not only for the above Chui-Lian multiwavelets but for 
other multiwavelets as well as long as one of two scaling 
functions is symmetric and the other of two scaling functions 
is antisymmetric. 

E. Numerical Simulations for the Combined 
Filters HI{UJ) and G;(w) 

In this section, we want to illustrate the combined filters 
Hi(ui) and G,(u;) for / = 1,2 for the GHM 2 wavelets. 
Three sets of these combined filters are illustrated: without 
prefiltering [Fig. 6(a) and (b)]; old zeroth-order orthogonal 

(a) 

(b) 

Fig. 6.   Combined filters of the GHM 2 wavelets without prefiltering. (a) 
|Jf,(--)|. (b) |G,(--)|. 

prefiltering in [1] [Fig. 7(a) and (b)]; new orthogonal prefilter- 
ing in Theorem 2 [Fig. 8(a) and (b)]. 

IV. NUMERICAL EXPERIMENTS 

In this section, we want to see the performance of our new 
prefiltering scheme through some simple numerical examples. 
The first test signal is the one hundredth horizontal line of 
the Cameraman image with size 256 x 256, which is shown in 
Fig. 9. Six experiments on energy compaction of the following 
six transforms are done. The first transform Ti is the GHM 
2 wavelets without prefiltering. The second transform T2 is 
the GHM 2 wavelets with the old zeroth-order orthogonal 
prefiltering with ix = l/(10>/5) and e2 = 7/(5^) in (3.29) 
in [1]. The third one T3 is the Daubechies £>4 wavelets. The 
forth and the fifth are the GHM 2 wavelets with our new 
orthogonal prefiltering of the zeroth and the first order, respec- 
tively. The sixth transform T6 is the Chui-Lian multiwavelet 
transform in Section IH-D with the zeroth-order prefiltering 
(Ai(u),A2(w)) = (1>0). Two step decompositions, i.e., J0 = 
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(a) (a) 

(b) (b) 

Fig. 7.   Combined filters of the GHM 2 wavelets with the old zeroth-order     Fig. 8.   Combined filters of the GHM 2 wavelets with their first-order 
orthogonal prefiltering in (I). (a) |H,(u>)|. (b) |G/(u;)|. orthogonal prefiltering. (a) \Hi{u)\. (b) |Gj(w)|. 

-2 and J = 0, in the first three transforms are performed, 
where the lowpass part of the transformed signal is of length 
64, whereas the bandpass part is of length 192. Since our new 
prefiltering is nonmaximally decimated and the signal size in 
the discrete multiwavelet transform domain is twice of the 
input signal (or the output signals of the first three transforms), 
three step decompositions, i.e., Jo = _3 and J = 0, of the 
discrete multiwavelet transform with our new prefiltering are 
performed for the last three transforms, where the length of 
the lowpass part of the transformed signal is also 64, whereas 
the length of the bandpass part is 512 - 64 = 448. Therefore, 
we have the following energy compaction ratio definitions. 

The energy compaction ratioes for the first three transforms 
Tk for k = 1,2,3 are defined by 

r_En5
=

6
65lyMI2 

Zl%\y[n)\2 

original signal 

-50 

-100 

-150 
100 150 200 

Fig. 9.   First test signal. 

300 
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decomposition by multiwavelet transtomi 
decomposition by Daubechies D4 transform 

-200 

-250 

-300 

Fig. 10. 
without 

300 
300 

Decomposition of the first test signal using the GHM 
prefiltering. 

decomposition by multiwavelet transform 

2 wavelets     Fig. 12.   Decomposition of the first test signal using Daubechies DA 

wavelets. 

decomposition by multiwavelet transform 

300 

Fig. 11.   Decomposition of the first test signal using the GHM 2 wavelets 
with the old zeroth-order orthogonal prefiltering in [1]. 

TABLE I 
ENERGY COMPACTION RATIO COMPARISON TOR THE FIRST TEST SIGNAL 

-250 600 

GHM 2 wavelets without prefiltering 
GHM 2 wavelets with the old 0th order orthogonal prefiltering in [1] 
Daubechies D4 wavelets 
GHM 2 wavelets with the new 0th order orthogonal prefiltering 
GHM 2 wavelets with the new 1th order orthogonal prefiltering 
Chui-Lian 2 wavelets -with the 0th order orthogonal prefiltering 

Fig. 13.   Decomposition of the first test signal using the GHM 2 wavelets 
with the new zeroth-order orthogonal prefiltering. 

TABLE II 
ENERGY COMPACTION RATIO COMPARISON FOR THE SECOND TEST SIGNAL 

0.1374 
0.1247 
0.1123 

Daubechies £>4 wavelets _  
GHM 2 wavelets with the new 1th order orthogonal prefiltering 

0.0896 Chui-Lian 2 wavelets with the 0th order orthogonal prefiltering 

0.0110 
0.0071 
0.0065 

0.0722 
0.0944 

where y[n] are the signals in the transform domain. The energy 
compaction ratioes for the rest three transforms, i.e., with the 
new prefiltering, are defined by 

T = £n=65 12/MI2 

H-i IvMI2 

The transformed signals with the first three transforms are 
shown in Figs. 10-12, respectively. The transformed signals 
with the new orthogonal prefiltering of the zeroth- order 
and the first-order for the GHM multiwavelets are shown in 
Figs. 13 and 14, respectively. The transformed signal with 

the zeroth-order orthogonal prefiltering for the Chui-Lian 
multiwavelet is shown in Fig. 15. Their energy compaction 
ratioes are listed in Table I. 

The second test signal is the two hundred and fiftieth 
horizontal line of the Einstein image with size 256 x 256. 
The original signal, the transformed signal with transform T3 

(Daubechies D4 wavelets), the transformed signal with trans- 
form T5 (the GHM 2 wavelets with the first-order orthogonal 
prefiltering), and transform signal with transform T6 (the Chui- 
Lian 2 wavelets with the zeroth-order orthogonal prefiltering) 
are shown in Figs. 16-19. Their energy compaction ratioes are 
listed in Table II with the same definitions as above. 
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decomposition by multiwavelot transform 

150 

-ISO 

300 400 500 600 

Fig. 14.   Decomposition of the first test signal using the GHM 2 wavelets     Fig. 17.   Decomposition of the second test signal using Daubechies D4 

with the new first-order orthogonal prefiltering. wavelets. 

^i^VH~~*ifl^w»^*W^-l 

0 1» a» 3oo 4oo 5oo 6oo      Rgi8.   Decomposition of the second test signal using the GHM 2 wavelets 

Fig. 15.    Decomposition of the first test signal using the Chui-Lian 2 wavelets     w«m *« mv/ first-order orthogonal prefiltering. 
with the new zeroth-order orthogonal prefiltering. 

A better energy compaction with the new orthogonal pre- 
filter than with others can be seen from the above tables. 

V. CONCLUSION 

In this paper, we have introduced a new prefilter design tech- 
nique for discrete multiwavelet transforms. The new technique 
is based on approximating a function with the lowpass property 
and the orthogonality of their translations by using linear com- 
binations of multiscaling functions and their translations. The 
new prefiltering is orthogonal but not maximally decimated. It 
deals with all decomposition steps for discrete multiwavelet 
transforms, whereas the prefiltering in [1] only focuses on 
the first step decomposition. The decimation nonmaximality 
allows one to have more freedom in designing a prefilter so 
that more desired conditions on the prefilters and the combined 
filters of the prefilters and multiwavelet vector filters are 
satisfied. Our numerical examples show that a better energy 
compaction ratio with the GHM 2 wavelets and the Chui-Lian 

100 ISO 200 

Fig. 16.   Second test signal. 
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-100 

•JK^^W+^WT^IA»>-4^M'^V*^-V* 

300 400 500 GOO 

Fig. 19.   Decomposition of the second test signal using the Chui-Lian 2 
wavelets with the new zeroth-order orthogonal prefiltering. 

2 wavelets with the new orthogonal prefiltering than the one 
with the D4 wavelet transform is achieved. This suggests the 
potential applications of discrete multiwavelet transforms in 
image compression/denoising. 

It is known that any nonredundant orthogonal transform 
keeps the energy. For example, the error energy after the 
quantization in the transform domain in the compression is 
equal to the error energy in the reconstruction domain in 
the decompression. This no longer holds for the redundant 
prefiltering/postfiltering studied in this paper. In the case 
when the quantization errors are random, it can be easily 
shown that the error energy in the reconstruction domain in 
the decompression is one fourth of the error energy in the 
transform domain in the compression. 

APPENDIX 

The error 

f(t)-Y,i>n2J/2<t>(2Jt-n) 

where 

bn= f f(t)2J'24>(2Jt-n)dt 

can be estimated as follows. In the Fourier transform domain, 
the L2 error can be expressed as 

/ 
dt /(*)-X>„2J/2«K2Jt-n) 

n 

= V2?/ r23{J)" *(w) £ *{-w+2n7r) 

x /(2J(w - 2mr)) 

When / is bandlimited with bandwidth 2J7r, the error can be 
simplied as 

,2 

//«-£6»2j/2^2j*-n) dt 

..   ^£>4-KF)I> 
Notice that <£(0) = 1. When J is large enough and the 
bandwidth W of the signal / is much smaller than 2J7r, i.e., 
W < 2J7T, then 

dt 

dui. 

-s/>-",(1-W?)l>-°- 
This is because </>(w/2J) « 1 for large J for |w| <W. 
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Orthonormal Matrix Valued Wavelets and 
Matrix Karhunen-Loeve Expansion 

Xiang-Gen Xia 

ABSTRACT. In this paper, we study orthonormal matrix valued wavelets for 
analyzing matrix (vector) valued signals based on matrix multiresolution anal- 
ysis. We present a simple sufficient condition on the matrix filter H(a>) that 
leads to orthonormal matrix valued wavelets. The sufficient condition is analo- 
gous to the one given by Mallat for scalar valued wavelets. The components at 
each column of matrix valued wavelets form multiwavelets for a scalar valued 
signal, where the orthonormality induced from the orthonormal matrix valued 
wavelets is weaker than the one in the current literature on orthonormal multi- 
wavelets. With the new orthonormality, one is able to construct orthonormal 
matrix valued wavelets simitar to the conventional multiresolution analysis 
based orthonormal wavelets. Moreover, we show that the new orthonormality 
provides a complete Karhunen-Loeve decomposition for matrix valued signals. 

1. Introduction 

While wavelets and multiwavelets have been extensively studied lately for a 
scalar-valued signals, see for example [1]-[17], there are only a few researches, [1], 
on matrix (vector) valued wavelets for matrix (vector) valued signals. In practice, it 
is however often to encounter matrix (vector) valued signals, such as video images, 
multi-spectral images and color images. A significant difference between matrix 
(vector) valued signals and scalar valued signals is that there are correlations for a 
matrix (vector) valued signal not only in the time domain but also between its com- 
ponents (or the spatial domain) at a fixed time while there is correlation for a scalar 
valued signal only in the time domain. The aim of the construction of orthonormal 
matrix valued wavelets is to decorrelate a matrix (vector) valued signal in both the 
time and the spatial domains. As a side result, the components at each column 
of orthonormal matrix valued wavelets also form multiwavelets for scalar valued 
signals. We will see later that the orthonormality for the multiwavelets generated 
from orthonormal matrix valued wavelets is weaker than the orthonormality in cur- 
rent literature on orthonormal multiwavelets, [4]-[15]. In [1], orthonormal matrix 
(vector) multiresolution analysis was introduced for the purpose of constructing 
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orthonormal matrix valued wavelets. However, the theory in [1] is not complete in 
the continuous time case in the sense that there is not a simple sufficient condition 
on-the matrix quadrature mirror filter (MQMF) H(w) that leads to orthonormal 
matrix valued wavelets. 

In this paper, we first re-introduce matrix valued signal spaces and matrix 
valued multiresolution analysis studied in [1]. We then present a simple sufficient 
condition on the MQMF H(w) for constructing orthonormal matrix valued wavelets, 
which basically proves the conjecture proposed in [1]. A connection between or- 
thonormal matrix valued wavelets and orthonormal multiwavelets in the current 
literature is studied. It can be seen that the orthonormality for the multiwavelets 
induced from the orthonormality of orthonormal matrix valued wavelets is weaker 
than the orthonormality for multiwavelets in the recent literature in the continu- 
ous time waveform case, see for example [4]-[15], while they are the same in the 
discrete time filterbank case. The weaker orthonormality in the continuous time 
case provides a weaker sufficient conditon for constructing multiwavelets with this 
weaker orthonormality. 

In the second part of this paper, we show that the orthonormality studied in this 
paper for matrix valued signals gives a complete Karhunen-Loeve decomposition for 
matrix valued signals, i.e., this orthonormality provides a complete decorrelation 
for a matrix valued signals in both the time and the spatial domains. 

2. Matrix Valued Signal Space and Multiresolution Analysis 

For convenience, we only study N x N matrix valued signals and wavelets. We 
introduce some notations first. 

2.1.  Matrix Valued Signal Space. Let 

QNXN _ |^4 .  ^4 is an jv x AT matrix with entries in the complex plane C}, 

and 

L2(a,b;CN*N) = {((t) = (fk,i(t))NxN ■■  /*,«(*) G L2(a,b),l< k,l < N} . 

The signal space L2{a,b;CNxN) is called a matrix valued signal space.   When 
a = -oo and b = oo, L2(a,b;CNxN) is also denoted by L2(R,CNxN). 

For any A € CNxN and f € L2(a, b;CNxN), the products 

At, fA€L2(a,b;CNxN). 

This implies that the matrix valued signal space L2(a,b;CNxN) is defined over 
C'VxV and not simply over C. 

Let || ■ \\M denote a matrix norm on CNxN. For each f € L2{a,b;CNxN), ||f|| 
denotes the norm of f associated with the matrix norm || • \\M as 

ab \ 1/2 

I|f(t)ll5f*j      • 

For f £ L2(a,b;CNxN), its integration / f{t)dt is defined by the integration of its 
components. 

For two matrix valued signals f, g 6 L2{a, b;CNxN), (f, g) denotes the integra- 
tion of the matrix product f(t)gt(t): 

(2.2) (f,g>= [ f(t)sHt)dt, 
JR 

«.^•^•»fc^-M-Ä 
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where * denotes the conjugate transpose. For convenience, we still call the operation 
(,} in (2.2) inner product although it is not the inner product in the common sense. 
With the definition (2.2) it is clear that (f,g) = (g,f)f. 

A sequence $jt(t) e L2(a,b;CNxN), k e Z, is called an orthonormal set in 
L2(a,b;CNxN)if 

(2.3) ($k,$,)=6(k-l)IN,  k,l€Z, 

where 6(k) = 1 when k = 0 and 6(k) = 0 when k ^ 0 and IN is the N x N identity 
matrix. A sequence $k(t) G L2(a,b;CNxN), k € Z, is called an orthonormal basis 
for L^a.tyC**") if it satisfies (2.3), and moreover, for any f(t) <E L2(a,6;CNxJV) 
there exists a sequence oi N x N constant matrices Fk such that 

(2.4) f(t) = ]TFfc*fc(t),   forte [a,6], 
fcez 

where the multiplication Fk$k(t) for each fixed t is the Nx AT matrix multiplication, 
and the convergence for the infinite summation is in the sense of the norm || • || 
defined by (2.1) for the matrix valued signal space. 

2.2. Matrix Valued Multiresolution Analysis. We next define matrix val- 
ued multiresolution analysis, which is similar to the conventional multiresolution 
analysis. 

A matrix valued multiresolution analysis (MMRA) of L2(R, QNxN) is a nested 
sequence of closed subspaces V,, j € Z, of L2(R, CNxN) such that 

(i). VjCVj+1)jgZ, 
(ii). UjgzV,- is dense in L2{R,CNxN) and rij6zVj = {0}, where 0 is the all 

zero matrix, 
(iii). f(t) € Vj if and only if f(2t) 6 Vj+U j € Z, 
(iv). There is a $ € V0 such that its translations $(t - it), k e Z, form an 

orthonormal basis for Vo- 

The above definition for an MMRA is notationally similar to the one for the 
conventional multiresolution analysis (MRA). We call <3>(i) a matrix valued scaling 
function (or simply scaling function) for the MMRA {Vj}. Since $(t) € V0 C Vi, 
there exist constant N x N matrices Hk, k e Z, such that, 

(2.5) $(t) = 2^//fc$(2t-fc). 
k 

Let 

(2.6) H(u>) = J2Hke-iku. 
k 

Then, 

(2.7) *(W) - H(|)6(|) = H(|)H(^) • • • $(0), 

where it is assumed that <l>(w) is continuous at u> — 0. This assumption is satisfied 
when H(w) has only finite terms and H(0) = IN- In this paper, for convenience 
we assume 6(0) = IN, which makes an important difference between matrix-valued 
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wavelets and multiwavelets from the matrix scaling equation or refinable equation 
point of view. By this assumption, 

oo 

(2.8) l(W) = H(X)- = nH(^). 
fc=i 

The equation (2.7) implies 

(2.9) H(0) = IAT,   OI ^Hk = IN- 
k 

It is not hard to see that the orthonormality of $(i - k), k 6 Z, (or the 
orthonormality of MMRA {Vj}) is equivalent to 

(2.10) ^H" + 27rk)&(u + 27rA:) = 2nlN> Vw G R 

fc 
In terms of the filter H(w), the above orthonormality implies 

(2.11) H(w)Ht(w) + H(w + 7r)Ht(w + 7r) = /Ar, Vw S R. 

The orthonormality (2.10) is in the continuous time domain for continuous-time 
waveforms while the one (2.11) is in the discrete time domain for discrete-time 

filterbanks. 
Assume we have the above MMRA and H(w). We now want to construct its 

corresponding matrix valued wavelets that form an orthonormal basis for the whole 
matrix valued signal space L2(R, CNx   ). 

Let G(w) satisfy 

(2.12) GH^H + G(w + ir)H*(ui + TT) = 0, VW <E R, 

and 

(2.13) G(w)Gt(u/) + G(u; + TTJG^W + TT) = IN, VW € R. 

Let 

(2.14) *M = G(|)*(|). 

The following result was proved in [1]. 

THEOREM 2.1. Let *(£) be the matrix valued function with its Fourier trans- 
form defined in (2.14). Then, its translations V(t-k), keZ, form an orthonormal 

basis for Wo = V, 0 V0, Thus, ¥jifc(«) = 2J'29{2>t - k),j,k E Z, form an or- 
thonormal basis for the matrix valued signal space L (R, C   x   ). 

The matrix filters H(w) and G(w) in (2.11)-(2.13) are called matrix quadrature 
mirror filters (MQMF). Given H(w), G(w) can be constructed by the following 
method. 

Let HM = (HM.H^ + TT)^ and G(u;) = (G(w),G(w + TT))T. Then, the 
orthogonality (2.11)-(2.13) is equivalent to the paraunitariness of the 2A^ x 2N ma- 
trix (H(w), G(w)). Let HjM and GjM for j = 0,1 be the polyphase components 
of HM and G(w), respectively: F(w) = F0(2w) + e-iwFi(2u;), where F is H or 
G. Then, the above paraunitariness is equivalent to the paraunitariness of the 
matrix (Ö(w),G(w)), where F(w) = (F0(w),Fi(w))t for F = H or G. Thus, the 
construction of G(w) in (2.11)-(2.13) is equivalent to the completion of a 2AT x 2N 
paraunitary matrix given its first N orthogonal columns H(o>). This completion 
can be obtained by employing the state-space description, see for example [20]-[22], 
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where only the orthogonal completion of a constant orthogonal matrix is needed 
for the corresponding constant realization matrix. 

In the next section, we want to construct orthonormal matrix valued scaling 
functions $(£) from the orthogonal filter H(w) in (2.11). 

3.  Construction of Matrix Valued Wavelets 

It is known that the conventional scaling functions or MRA can be constructed 
from QMF H{w) and necessary and sufficient conditions have been obtained, [18]- 
[19]. For matrix valued wavelets, we present the following results. We first present 
a lemma. In what follows, we are only interested in FIR MQMF H(w), i.e., H(u;) 
is a polynomial matrix of e~iu. 

LEMMA 3.1. Let H(w) satisfy (2.9) and (2.11). If there exist a constant C > 0 
and an integer K0 such that for any w e {-2Kn, 2Kn) and any K > K0, 

(3-1) IIII
H

(S)^^
C

IIII
H

(S)IIM, 
I=\ ;=i 

then,  the solution $(£) in the matrix dilation equation (2.5) is a matrix valued 
scaling function for an MMRA. 

Proof. The assumption of the FIR property on H(w) leads to the finiteness 
of the right hand side of (3.1). To prove Lemma 3.1 we only need to prove the 
orthonormality of $(* - k), k £ Z. The rest is similar to the conventional MRA 
theory, see for example [19]. 

For an integer K > 0, let 

K 

W(W) = IlHÖ^-2^,2^lH' 
1=1 

Then, 

L tiK{ui)fi\({u)e-inudLj 
R 

r>^"H<£)H,(£)-"H,<^-'""d' 
,2K + 1r 

Jo ~v 2 
2KrrK-\ 

H(?)...H(^)Ht(^)...Ht(|)e-'-<4l, l2*' 

-<^, 
'21' 

by (2.11) 
/ /iK-iM/4-iMe_mwcL; 

JR. 

H(£)Ht(£) + H(£+ »)*(£+„) 
ÜJ 

2K. <2K 

e'™dwIN = 2n6(n)l N- 

p2ir 

JO 

It is clear that nK{u) converges to $(w) pointwisely in (2.8) since H(0) = IN and 
H(u>) is a polynomial matrix of e-'". By (3.1), 

||/i*H/4M - HU)&(")\\M < (C+ l)\\*{u>)&(u)\\M,  Vw G R. 
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By the dominated convergence theorem, we have \\HK»K - $$f || -► 0 as K -► OO. 

Therefore, 

f *(«)*'(* - n)dt =^J «(«J^Mc-^dw 

= —  lim   / /iicMMlf Me-inü,dw = S(n)IN. 

This proves the orthonormality of $(t-k), k eZ. + 
We next want to present a sufficient condition on H(w) so that (3.1) is satisfied. 

LEMMA 3.2. let H(w) fee o polynomial matrix ofe'1" and H(0) = /jv- ^nen, 
</iere exist an integer K0 and a constant C > 0 such that 

K 
nnH(5)iiM<ciinH(|)iiM, 

for u € (—7T, 7r) ond if > i^o- 

Proof. Since H(w) is a polynomial matrix of c"*" and 4(0) = IN, we have 

oo 

*H=IIH^)' 
fc=i 

and 
lim ||$(w) - IN\\M = 0. 
w—o 

Thus, there exists an integer K0 > 0 such that, for k > K0 and |w| < TT/2, 

||$(i£)-/N||M<e, 

and _j 

II*
_1

(^)HM^7.  
J-e- \,    i.e., II f fi  H(£))     IIM<;, 

where e is a small positive constant. 
Therefore, for K > K0 and |w| < TT/2, 

K oo /   °° \_1 °°       a; 

iin<)ii"="iiH(?) n H(£)  iiM<cnnH(?)iiM, 
i = l  .     ■* (=1 \l=K+l / '=1 

where C = 1/c ♦ 

LEMMA 3.3. Let H(w) 6e a polynomial matrix of e~i{J and H(0) = Jyv- # 

inf    |A(w)| > 0 
M<ir/2 

/or any ez5enm/ue function X(u) of the polynomial matrix H(w) of variable e" 
tnen, f/iere exists a constant C > 0 suc/i t/iat, /or any w £ (-2   TT,2   TT), 

nnH(^)iiM<qiiiH(5)iiM- 
i=i '=i 
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Proof.  For u G {-2Kn,2Kir), if k > K, then w/2k G (-7r/2,7r/2).  By the 
proof of Lemma 3.2, for u G (-2Kn, 2Kw), 

ii ( n H(|)) 
xiu<^. 

\I=K+K0 + 1 / 

Let us consider the case of I G {K + 1, Ä" + 2,..., Ä" + KQ). Let 5 > 0 such that 
inf|u,|<x/2 |A(OJ)| > <5 for all eigenvalue functions of the polynomial matrix H(o>). 
Then, (A(u>))-1 is an eigenvalue function of the function matrix (H(u>))-1 of variable 
e~lu} for \u\ < 7r/2. Thus, there exists positive constant C\, which only depends on 
6, such that, for \u>\ < n/2, 

IKHMrlM^Cx. 
Therefore, for any u G (-2Kn,2Kx), 

K oo / oo \ _1   /K+Ko \ _1 

mH(|)ik = iinH(^)   n H^    n ^ \M 

oo 

^ cnnH(^)iu, 

where C = Cf °/e. 4 
By combining "the above three lemmas, we have proved the following result. 

THEOREM 3.4. Let H(u>) 6e a polynomial matrix ofe~tu and satisfy (2.9) and 
(2.11). If 

inf    |AM|>0 
|w|<7r/2 

for any eigenvalue function \{ui) of the polynomial matrix H(CJ) of variable e~lw, 
then, the solution $(t) in the matrix dilation equation (2.5) is a matrix valued scal- 
ing function for an MMRA, and therefore ^,fc(i), j, k G Z, form an orthonormal 
basis for the matrix valued signal space L2(R,CNxN). 

Notice that the above sufficient condition is analogous of the one given by Mallat 
[18]. With the above sufficient condition, it is not hard to construct nontrivial 
families of orthonormal matrix valued wavelets. The following is an example. 

It is not hard to show that, if H(u;) = i(Jw+e,u'E(2u;)) and E(w) is paraunitary, 
i.e., E(w)Et(w) = IN, then G(w) = e-iu,HT(a/ + 7r) and H(w) form a pair of MQMF 
satisfying (2.11)-(2.13). Such property for H(u;) is called the sampling property in 
[1]. Let E(w) = U(w)diag(e-<fc>taV-- ,e-,fc"u,)Ut(a;) for Jfc,- = 0 or 1, where U(w) 
is an arbitrary paraunitary polynomial matrix and U(0) = IN- Then, it is not 
hard to see that the above H(w) and G(w) satisfy (2.11)-(2.13) and the sufficient 
condition in Theorem 3.4. 

4. Connection to Multiwavelets 

Let ($(£))jfc, (9(t))ik and (Vj)ik be the components at the 2th column and kth 
row of $(r), V(t) and V,-, respectively, I, k = 1,2,..., N and j G Z. Then, 

(Vj)|fc C (Vj+1),fe,   and f(t) G (V,)ifc <=► f(2t) G (Vj+i)ik, 

and 
nj6z(Vj)/fc = {0},   and UjeZ (Vj)ik  is dense in L2(R). 
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Moreover, for any flk G (Vo)ik, there exist constants akumj,k such that 

N 

(4.1) Mt) =J2J2 a*i.m.'.*(*(* - MW, *G R 

fcjgZm=l 

And, for any / 6 L2(R), there exist constants ajtkui,k such that 
AT 

(4.2) /(*) = Y, ^2aiM,iA^iki(t))ik, ten, 
j,kiEZ 1=1 

where k is any integer with 1 < k < N. This implies the following proposition. 

THEOREM 4.1. Let $(i) be a matrix valued scaling function of an MMRA {Vj} 
and $(f) be its an associated matrix valued wavelet function. Then, for any fixed 
k, 1 < k < N, the functions ($(t))ik, I = 1,2,...,N, form multiscaling functions 
and (^!(t))ik, I = l,2,...,N, form multiwavelets. Moreover, for each pair (l,k), the 
spaces (Vj)ik, j e Z, form a multiresolution analysis of multiplicity rk where rk is 
the maximum number of linearly independent functions of ($(t))ik, 1-1,2,..., N. 

For more about multiresolution analysis of multiplicity r, see [2]-[3]. We next 
want to study the orthonormality of the column multiscaling functions induced 
from the orthonormality for matrix valued scaling functions, which is 

N       . 

(4.3) Y,' / ($(* " Ti))'-(**(* _ T2))kmdt = 6(TI - T2)6(l - k). 
m=l*' 

Or, 

r N     r (4.4) (${t-Tl))lk(*'{t-T*))kkdt+        J!        j(Ht-Tl))lm{$*(t-T2))krndt 

= 6{Tl - r2)6(l - k). 
Consider the multiscaling functions from the kth column ($(t))ik{t), 1 < / < 

N, of $(<)•   The conventional orthogonality studied in the current literature for 
multiwavelets is 

(4.5) /"(*(< - Ti))i!fc(**(* - T2))hkdt = 6{Tl - T2)6{h - h)- 

We call the orthogonality (4.5) Orthogonality A, and the orthogonality (4.4) Or- 
thogonality B, for multiscaling functions (*(*))«*(*). 1<1< N. One can see that 
the second term in the left hand side of (4.4), Orthogonality B, is the flexibility 
term over (4.5), Orthogonality A. 

LEMMA 4.2. The conventional Orthogonality A for all column vectors of a ma- 
trix valued scaling function implies Orthogonality B induced from the orthogonality 
for matrix valued scaling functions. 

Proof. To prove (4.4), we only need to prove (4.3), which is 

£    [(Qit-nVUVit-Tjhmdt (4=S)   JT 6(n-T2)6(l-k) = NSfa-TtMl-k). 

* 
Comparing Orthogonality A in (4.5) and Orthogonality B in (4.4) or (4.3), one 

can see that the former requires the orthogonality for each individual component 
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in a vector while the later only needs the orthogonality for the vector itself. This 
implies that Orthogonality B is weaker than Orthogonality A. On the other hand, 
these two orthogonalities imply the same orthogonality (2.11) for the discrete matrix 
filterbank H(w). 

We now consider a subspace of L2(R, CNxN): 

L2(R,CN) = {{= (fk,,(t))NxN e L2(R,CNxN) :  /*,,(*) = 0 for 2 < / < TV}, 

which is isomorphic to the N x 1 vector valued signal space. We may define its 
corresponding MAR, scaling functions, wavelet functions similarly. In this case, 
*(*) = (($(t))ki)NxN with (*(*))*! = 0 for 2 < I < N. Clearly, Orthogonality 
A and Orthogonality B are equivalent in this case. In other words, Orthogonality 
A only corresponds to Orthogonality B in a proper subspace of the matrix valued 
signal space. 

With Orthogonality A, necessary and sufficient conditions on H(w) that leads 
to orthogonal multiwavelets have been obtained, see for example [15]. Since the 
stronger Orthogonality A is used, the necessary and sufficient condition on H(w) is 
not easy to check or use. However, with the weaker Orthogonality B, the condition 
on H(w) in Theorem 3.4 is much easier to check so that one is able to use it to 
construct families of nontrivial orthogonal(B) multiwavelets as studied in Section 
3. The basic idea doing this is to embed aniVxl vector into an TV x N matrix 
and then use the matrix orthogonality. Another way to interpret this idea is that 
we lift a one dimensional vector into a two dimensional matrix with additional 
freedoms to play with, which makes the construction easier. One now might want 
to ask whether this new Orthogonality B is physically meaningful. The answer is 
yes because it provides a complete decorrelation for matrix valued signals as we 
shall study in the next section. 

5.  Matrix Karhunen Loeve Expansion 

In this section, we show that Orthogonality B provides a complete decorrelation 
for matrix valued random processes. 

5.1. Matrix KL Expansion:  Definition. Let X(<), t € [a,b] with -co < 
a < b < oo, be a matrix valued random process with finite second moments, i.e., 

E(X*(t)X(t)) € C""", 

and each path X(0 € L2{R;CNxN). Let 

(5.1) R(s,<) = E(X!{s)X(t)),  8,t€[a,b]. 

If there exist *n(i) £ L2{a,b-,CNxN), A„ £ CN*N, n = 1,2,..., such that 

(5.2) I $n(s)R(s, t)ds = An*n(0,  n = 1,2,..., t € [a, b], 
Ja 

(5.3) 

and 

(5.4) 

($„,$m) =6(m-n)IN,  m,n= 1,2,..., 

oo 

X(i) = £(X,*„>*„(*),  te[a,b], 

f 
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then, the expansion of X(t) in (5.4) is called the matrix Karhunen-Loeve expansion 
of X(t)- If the matrix Karhunen-Loeve (MKL) expansion of X(t) exists, then X(f) 

•is decorrelated into a matrix valued random sequence Y„ = ($„,X) as 

(5.5) E(YnYl) = 6{n-m)An,  m,n = 1,2,.... 

The random sequence Yn, n = 0,1,2,..., is called the matrix Karhunen-Loeve 

transform of X(f). 
Notice that when N = 1, the above MKL expansions/transforms are reduced to 

the conventional KL expansions/transforms. The object of this section is to study 

the MKL expansion of X(t). . . 
Two special cases were studied in [23]-[24]. In one, the constant matrix An in 

(5 2) was replaced by a scalar value and in the other, *„(*) in (5.2) was replaced by 
a scalar-valued function. As mentioned in §3.7 in [24], only a few cases satisfy these 
assumptions, and therefore they are not complete. The main reason for not using 
the product of two matrices at the right hand side in (5.2) is due to the difficulty 
of handling the noncommutativity of matrix products. 

5.2. The Generalized Hilbert-Schmidt and Mercer's Theorems. With- 
out loss of generality, in what follows we assume a = 0 and b = T > 0. Let K(s, t), 
s t G fO 71 be a matrix valued function of two variables in L (0,T;C ). In 
oiher words, for each s € [0,T], *(,,-) G L2(0,T;C»*N), and for each * G [0,T], 
K(;t)eL2(0tT;CNxN),aad 

(5.6) j   f   \\K(s,t)\\2Mdsdt <oo. 

If K(s,t) satisfies the above conditions, then K(s,t) is called a matrix Fredholm 
integral operator. It is clear that a matrix Fredholm integral operator K(s,t) maps 

L2(0,T;CNxN) into itself: 

{Kt){t)= fTf(s)K(s,t)ds€L2(0,T;CN*N). 
Jo 

Let *(0 G L2(0,T;CN*N) with (*,*> - IN, and A G CN*N.  If the following 

identity holds: 

(5.7) /   *(s)K(s,t)ds = A$(t),  tG[0,T], 
Jo 

then, «J>(0 and A are called eigen-matrix-functions and eigen-matrix-values of the 

operator K(s,t), respectively. _ 
Notice that the property <*,$) = IN is required in the above definitions of 

eigen-matrix-functions and eigen-matrix-values, which is different from the scalar- 
valued case. In the scalar-valued case, if <t>(t) is an eigenfunction associated with an 
eigenvalue X for a scalar Fredholm integral operator, then a<f>(t) for any constant 
a / 0 is also an eigenfunction associated with A. It is not known, however, whether 
the following statement is true: If *(t) is an eigen-matrix-function associated with 
an eigen-matrix-value A for a matrix Fredholm integral operator K(s, t), then A9{t) 
or 9{t)A for an Nx N matrix A G CN * N is also an eigen-matrix-function associated 
with A for the operator K(s,t). The difficulty is due to the noncommutativity of 
matrix multiplications. 
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A matrix Fredholm integral operator K(s, t) is called Hermitian if K(s, t) = 
K*(£, s) for s, t € [0, T]. If K(s, <) is Hermitian and A is its eigen-matrix-value, then 
A = A*, i.e., A is also Hermitian. This is because 

($,K$) = A = {{$,K$)?=A*. 

We associate each matrix Fredholm integral operator K(s,t) on [0, T] x [0,T] 
with the following scalar Fredholm integral operator K(s,t) on [0, ATT] x [0, AT]: 

(5.8) K(s, t) £ Kk,,(s -(k- 1)T, t-(l- 1)T), 

if («,«) e ((Jfc - \)T,kT) x ((/ - 1)T,/T], k,l = 1,2,...,N, where tffc,i(*,0 is the 
component function of K(s,t) at the fcth row and the Ith column. The property 
(5.6) implies the following properties for K(s,t): 

NT    rNT 
(5.9) 

/  / Jo      Jo 
\K(s,t)\2dtds < oo, 

and if K(s,t) is Hermitian then K(s,t) is also Hermitian, i.e., K(s,t) 
where * means the complex conjugate. 

We now have the following generalized Hilbert-Schmidt theorem. 

K*(t,s), 

THEOREM 5.1. Let K(s, t), s,t € [0,T], be a Hermitian matrix Fredholm in- 
tegral operator and K(s;t), s,t € [0,AT], be its associated scalar Fredholm inte- 
gral operator. Let Ai,A2,..., all be eigenvalues (including multiples) of K(s,t) with 
|Ai| > IA2I > •■•• Then, an N x N matrix A is an eigen-matrix-value of the 
operator K(s,t) if and only if 

(5.10) A = Udiag(Xni,--- ,X„N)W, 

where U is a certain NxN unitary matrix, andni,...,n^ are positive integers with 
n\ < "2 < • • • < KN- Moreover, if the operator K(s,t) doesn't have zero eigenvalue, 
i.e., \Xn\ > 0, n = 1,2,..., then, the eigen-matrix-functions $n(t) corresponding 

to the eigen-matrix-values An = diag(X(n_i)N+i, ■ ■ ■ ,XnN), n — 1,2,..., form an 
orthonormal basis for the matrix valued signal space L2(0, T; CNxN). 

Proof: From the definition of an eigen-matrix-value in (5.7), WAU is an eigen- 
matrix-value of K(s,t) if A is an eigen-matrix-value of K(s,t) and U is an N x N 
unitary matrix. Thus, to prove A in (5.10) is an eigen-matrix-value of K(s,t), 
we only need to prove the diagonal matrix diag(Ani, • • • , XnN) is an eigen-matrix- 
value of K(s, t). In fact, without loss of generality, we only need to prove An is an 
eigen-matrix-value of K(s, t) for any integer n > 1. 

Let <i>n(t), t € [0, AT], be the eigenfunctions of K(s,t) corresponding to An, 
n - 1,2 i.e., 4>n{t), n — 1,2,..., form an orthonormal set of L2(0, AT;C), and 

[NT 
(5.11) /      4>n{s)K{s,t)ds = Xn<pn(t), te[0,NT}. 

Jo 

Then, equation (5.11) can be rewritten as 

.TN-\ 

(5.12) /    J2<t>n(s + kT)K{s + kT,t)ds = Xn<pn(t), te[0,NT}. 
J°    fc=0 

ft«* u *w»r.«fJI.**^,»*-«* 
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Let^fc,„(s) = ^n(s + fcT),  se[Ö,T], k = 0,l,...,N-l. Then, 

.TN-l 

05.13) /      J2 <t>k,n(sW(s + fcT, *)<&> = \n(f>l,n(t ~ ^), 

for t G (/T, (Z + 1)T], Z = 0,1, ...,iV - 1. Let 

/      4>0,(n-l)N+l(s) 4>0,(n-l)N+2(s) ••• 0O,nJv(s)      ^ 

(5 14)     $   (s) = <£l,(n-l)AM-l(s) </>l,(n-l)JV+2(s) ••• </>l,n/v(s) 

\   0Ar_l,(„_l)AT+l(s)      ^N-l,(n-l)W+2(s)      •■•      4>N-1,UN(S)   J 

By (5.8), (5.13) can be rewritten as 

(5.15) I   $n(s)K(s,t)dt = AMt), n=l,2,..., *G[0,r]. 
Jo 

By the orthonormality of <£„(*)> t € [0, NT], it is not hard to see that 

(5.16) {$m,$n) = 8(rn-n)IN, m,n = 1,2,.... 

Therefore, we have proved that A„, n = 1,2,..., are eigen-matrix-values of the 
operator K(s, t). 

Conversely, let A be an eigen-matrix-value of the operator K(s,t). By the 
previous discussion we know that A is Hermitian. Thus, there exists a unitary 
matrix U such that A = Udia.g(au • ■ • , aN)U^ with \ax \ > ■ ■ • > \aN\. By definition 
(5.7) of an eigen-matrix-value, diag(ai,--- ,aN) is also an eigen-matrix-value of 
K(s,t), i.e., there is $(i) e L2(0,T;CNxN) with <$,*) = IN such that 

(5.17) /   $(s)K(s,t)ds = diag(au-'-,aN)*(t),  t€[0,T\. 
Jo 

Assume 4>m „(s) is the rath row and the nth column component function of $(s). 
Let <t>n(s) = 0m,n(s - (m - 1)T) if s e ((m-l)T,mT] for m,n= 1,2,..., AT. By 
(5.8) and (5.17), the function <j>n(s) is an eigenfunction of the operator K{s,t) with 
its corresponding eigenvalue an, n = 1,2,..., AT. Thus, ak = A„t for some k with 
ri\ < n2 < ■ • • < n/v. This proves (5.10). 

When K(s,t) has no zero eigenvalue, by the scalar Hilbert-Schmidt Theorem 
(see [25]), the eigenfunctions <pn(t), n = 1,2,..., form an orthonormal basis for 
L2(0, NT; CNxN). Therefore, any f(t) G L2(0, NT; C) can be represented as 

OC 

(5.18) f(t) = 52(f,4>n)4>n(t),   t G [0,NT]. 
n=l 

Similarly, (5.18) can be rewritten as 

f(t) = V /   f(s)(^o,n(a),-",0Ar-,,„(s))tds(Ä),„(t)."-.^-i,n(«)). te[0,T], 
n=iJo 

for any N x 1 vector-valued f G L2(0, T; CN). By regrouping the above summation, 
we have 

oo     .T 

(5.19) f(t) = J2       Hs)*l(s)*n(t)ds,te[0,T],{€L2(0,T;CN). 
n=i-/o 
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Extending f(i) 6 L2(0,T;CN) to f(i) € L2{0,T;CNxN), we have 

oo 

<9 (5.20) f(t) = '52({'*n)*n(t), t£[0,T\,f(t)eL2(0,T;CNxN). 
n=l 

This proves that the sequence $„(£), n = 1,2,..., forms an orthonormal basis for 
L2(0,T;CNxN). * 

From the above proof, the eigen-matrix-function $n(t) in Theorem 5.1 associ- 
^ ated with the eigen-matrix-value An in Theorem 5.1 is formulated by (5.14), for 

n = 1,2,....  We next want to generalize Mercer's Theorem.  A matrix Fredholm 
integral operator K(s, t) is called positive if the N x N matrix (f, Kf) for any 
f(0 6 L2(0,T; CNxN) is nonnegative definite, i.e., x+(f, Kf)x > 0 for any x 6 CN. 

LEMMA 5.2. A matrix Fredholm integral operator K(s, t) is positive if and only 
if its associated scalar Fredholm integral operator K(s, t) is positive. 

Proof: Writing (/, Kf) up, similar to the proof of Theorem 5.1, we have 

pNT    i-NT fT    rT 

(5.21) /       /      r(s)K*(s,t)f(t)dsdt=        /   f(t)Kl{s,t)fi(8)dtds, 
Jo     Jo Jo   Jo 

where f{t) € L2(0,T;CN). On the other hand, 

(5.22) xf /    /   f(«)Kt(a,*)ft(a)dfdsx= /    /  (x^(t))K^s,t)(^{(s))Utds, 
Jo   Jo Jo   Jo 

where xeC" and {(t) 6 L2(0,T;CNxN). Since 

L2(0,T;CN) = {f(i)x:  x £ C\ f € L2(0,T; CNxN)}, 

the values in (5.21) are nonnegative for all f(t) € L2(0, T; CN) is equivalent to that 
the values in (5.22) are nonnegative for all xeC" and all f(t) e L2(0,T;CNxN). 
This proves Lemma 5.2. 4» 

we have the following generalized form of Mercer's Theorem. 

THEOREM 5.3. Let K(s,t) be a Hermitian matrix Fredholm integral operator. 
IfK(s,t) is positive and its associated scalar Fredholm integral operator K(s,t) is 
continuous in [0, AT] x [0,NT], then 

(5.23) K(s,*) = ;jr*n(s)A„*„(t),  s,i€[0,T], 
n=l 

where 4>n(£) and An are the same as in Theorem 5.1 and the convergence of the 
infinite summation is uniform. 

Proof:   By Lemma 5.2, the operator K(s, t) is also positive.   By Mercer's 
theorem for the operator K(s,t) (see [25]), 

oc 

K(s, t) = J2 fa(s)4>n(t)K,  s, t € [0,NT], 
n = l 

where 4>n, \n are eigenfunctions and eigenvalues of K(s,t) and the convergence is 
uniform. Regrouping the above summation and using the same technique in the 
proof of Theorem 5.1, (5.23) can be proved. & 

Pfo; 

"P. 

"   •>'* 
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5.3. Matrix KL Expansions for Continuous-Time Matrix Valued Sig- 
nals. We now come back to the MKL expansions for continuous-time matrix valued 

signals. . 
Let R(s,i) be the correlation matrix function denned by (5.1) of a matrrxval- 

ued random process X(i) with a = 0 and b = T. Assume R(s,t) € L*(0, T; CM- 
Then R(s, t) is a Hermitian matrix Predholm integral operator on L (0, T; C x ); 
moreover K(s,t) is positive. Therefore, we can apply the generalized Hilbert- 
Schmidt Theorem and the generalized Mercer's Theorem. 

Let R(s t) be the associated scalar Fredholm integral operator of the operator 
R(s,t), that is defined by (5.8). Let <£„(*), A», n = 1,2,..., all be eigenfunctions 
and eigenvalues (including multiples) of the operator R{s,t) with 

(5.24) /      <l>n(s)R(s, t)da = Xn4>n(t), t € [0, NT],n = 1,2,..., 
Jo 

and 
[NT 

(5.25) /      <l>m(t)(t>*n{t)dt = 8(m-n), m,n = 1,2,..., 
Jo 

where |Ai| > |A2| >      • Since the operator R(s,i) is positive, by Lemma 5.2, the 
operator R(s, t) is also positive. Thus, Aj > A2 > • ■ • > 0. 

Let 

(5.26) •   An = diag(A(„_i)Ar+i.-" »A„AT), n = 1,2,..., 

and, for t € [0,T], n = 1,2,..., and *n(t) defined by (5.14). Then, by Theorem 
5.1, its proof and (5.25), $„(<) is an eigen-matrix-function of the operator K{s,t) 
corresponding to the eigen-matrix value A„ in (5.26) for n = 1,2,.... This gives the 
following first condition on signals so that their MKL expansions exist. 

THEOREM 5.4. Let X(t), t € [0,T], be a random process with its correlation 
matru function R(s,t) € L2{0,T;CN*N). 7/An > 0, n = 1,2,..., then, for each 

path ofX(t), 
oo 

(5.27) X(t) = £<X, $„>*„(*),  * € [0,T], 
n=l 

i.e., f/ie MKL expansion ofX(t) exists in the sense (5.2)-(5.4). 

The second condition is given by the following theorem. 

THEOREM 5.5. Let X{t), t € [0,T], be a random process with its correlation 
matrix function R(s, t) £ L2(0, T;CNxN). If its associated scalar Fredholm integral 
operator R{s, t) is continuous in [0, NT] x [0, NT], then the MKL expansion ofX(t) 

exists: 
oc 

(5.28) X(t) = £<X, *„)*„(«),  * € [0-1!. 
n=l 

where the convergence is in the mean square sense. 

The proofs of the above two theorems are straightforward by using the results 
in Section 5.2. 

From Theorems 5.4-5.5, it seems that the MKL expansions of X(t) depend on 
the definition of the associated scalar Fredholm integral operator R{s,t) of R(s,t). 
One might ask, when the existence of the MKL expansion of X(t) in the sense 
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of (5.2)-(5.4) is assumed, whether the MKL expansion of X(t) changes if the way 
to define R(s,t) in (5.8) changes. The answer is NO. In other words, the MKL 
expansions (5.27) and (5.28) in Theorems 5.4-5.5 are necessary. 

THEOREM 5.6. Let X(t), t € [0,T], be a random process with its correlation 
matrix function R(s,t) € L2(0,T;CNxN). If the MKL expansion ofX(t) exists in 
the sense of (5.2)-(5.4), then the MKL expansion ofX(t) can always be written as 

oo 

(5.29) X(t) = £(X, *„>*„(*),  t € [0,11, 
' n=l 

where $n(t), n — 1,2..., are defined in (5.14)- 

Proof: By (5.2)-(5.4), there exist <(*) € L2(0,T;CNxN) and A^ € CNxN, 
n = 1,2,..., such that 

j Jo 
$„(s)R(s, t)ds = An*n(i), n = 1,2,..., t £ [0,T], 

(K, O = s(™ ~ m)IN, m, n = 1,2,..., 

r 

»-»«*«**, 

and ■":.        v 

(5.30) x(t) = S<X-<>*«(*), *e[o,n- :' — 

Thus, $n (t) is an eigen-matrix-function of the operator R(s, t) corresponding to the ; ^;% 
eigen-matrix-value An for n = 1,2,.... By Theorem 5.1, there exist unitary matrices 
Un such that A„ = U^KnUn for n = 1,2,..., where the order of the eigenvalues A„ ; ■ :J 
is rearranged if necessary. Moreover, An is an eigen-matrix-value of R(s, t) with its |    ■ . .;, > 
eigen-matrix-function {/„<!>„(£), n = 1,2,... . Then, similar to the proof of Theorem '■'.■i'?;V':^ 
5.1, one can show that $n(t) = Un$'n(t), n= 1,2,... . By (5.30), \        '    '        ;•>* 

oo oo ;"•■■■.'•■, •'■■'■'!&!>; 

X(t) = £<Xrt/t<!>„)[/*$n(i) = £<X, *„>*„(*)■ '  \;^ 
n=l n=l i    .     ■    ' '    ■_ 

This proves (5.29). 4 ''•■',' 
From Thoerems 5.1-5.6, one can clearly see that a matrix valued random process ;■'■% 

X{t) is completely decorrelated in the both time and the spatial domains using \ • ;tl 
Orthogonality B. ■     ■ '. V- 

6. Conclusion Ü-? 

In this paper, we studied orthonormal matrix valued multiresolution analysis | '     '   % 
and wavelets.   A simple sufficient condition on the matrix filter H(u>) that leads \'% 
to orthonormal matrix valued wavelets is presented, which is analogous to the i    ~r~' '    w. 
one given by Mallat in [18] for scalar valued wavelets.   This sufficient condition t ■':}$'$$; 
enables us to construct families of nontrivial orthonormal matrix valued wavelets. } ,r, f"^C 

:••-■*.-: 

With orthonormal matrix valued wavelets, one is able to construct multiwavelets [ ■''■■■'■■•, 
with a different orthonormality (called Orthogonality B in this paper) from the | ^ 
one people currently use (called Orthogonality A in this paper).   It was shown [ ,% 
that Orthogonality B is weaker than Orthogonality A. We believe that this weaker | *   \§. 
orthogonality makes the sufficient condition simple. The main idea behind it is that j ■":''!":x''M 
one dimensional vectors are lifted to two dimensional matrices, and therefore more i '    '           / *" '* 
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freedoms are available. It was also shown that Orthogonality B provides a complete 
Karhunen-Loeve expansion, i.e., a complete decorrelation, for matrix valued signals. 
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1.    Introduction 

With the rapid development of the current information technology, electronic publishing, 
such as the distribution of digitized images/videos, is becoming more and more popular. 
An important issue for electronic publishing is copyright protection. Watermarking is 
one of the current copyright protection methods that have recently received considerable 
attention. See, for example, [1-8, 18]. Basically, "invisible" watermarking for digital 
images consists of signing an image with a signature or copyright message such that 
the message is secretly embedded in the image and there is negligible visible difference 
between the original and the signed images. 

There are two common methods of watermarking: the frequency domain and 
the spatial domain watermarks, for example [1-8, 18]. In this paper, we focus on fre- 
quency domain watermarks. Recent frequency domain watermarking methods are based 
on the discrete cosine transform (DCT), where pseudo-random sequences, such as M- 
sequences are added to the DCT coefficients at the middle frequencies as signatures 
[2-3] This' approach, of course, matches the current image/video compression standards 
well such as JPEG, MPEG1-2, etc. It is likely that the wavelet image/video coding, 
such as embedded zero-tree wavelet (EZW) coding, will be included in the up-coming 
image/video compression standards, such as JPEG2000 and MPEG4. Therefore, it is 
important to study watermarking methods in the wavelet transform domain. 

In this paper, we propose a wavelet transform based watermarking method by 
adding pseudo-random codes to the large coefficients at the high and middle frequency 
bands of the discrete wavelet transform of an image. The basic idea is the same as the 
spread spectrum watermarking idea proposed by Cox et. al. in [2]. There are, however, 
three advantages to the approach in the wavelet transform domain. The first advantage 
is that the watermarking method has multiresolut ion characteristics and is hierarchical. 
In the case when the received image is not distorted significantly, the cross correlations 
with the whole size of the image may not be necessary, and therefore much of the 
computational load can be saved. The second advantage lies in the following argument^ 
It is usually true that the human eyes are not sensitive to the small changes in edges and 
textures of an image but are very sensitive to the small changes in the smooth parts of 
an image With the DWT, the edges and textures are usually well confined to the high 
frequency subands, such as HH, LH, HL etc. Large coefficients in these bands usually 
indicate edges in an image. Therefore, adding watermarks to these large coefficients 
is difficult for the human eyes to perceive. The third advantage is that this approach 
matches the emerging image/video compression standards. Our numerical results show 
that the watermarking method we propose is very robust to wavelet transform based 
image compressions, such as the embedded zero-tree wavelet (EZW) image compression 
scheme   and as well as to other common image distortions, such as additive noise, 
rescaling/stretching, and halftoning. The intuitive reason for the advantage of the DWT 
approach over the DCT approach in rescaling is as follows. The DCT coefficients for the 
«■scaled image are shifted in two directions from the ones for the original image, which 
degrades the correlation detection for the watermark. Since the DWT are localized 
not only in the time but also in the frequency domain [9-15], the degradation for the 
correlation detection in the DWT domain is not as serious as the one in the DCT 

domain. 
Another difference in this paper with the approach proposed by Cox et. al. in 

[2] is the watermark detection using the correlation measure. The watermark detection 
method in [2] is to take the inner product (the correlation at the T = 0 offset) of the 
watermark and the difference in the DCT domain of the watermarked image and the 
original image. Even though both the difference and the watermark are normalized, the 
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inner product may be small if the difference significantly differs from the watermark 
although there may be a watermark in the image. In this case, it may fail to detect 
the watermark. In this paper, we propose to take the correlation at all offsets r of 
the watermark and the difference in the DWT domain the watermarked image and 
the original image in different resolutions. The advantage of this new approach is that, 
although the peak correlation value may not be large, it is much larger than all other 
correlation values at other offsets if there is a watermark in the image. This ensures 
the detection of the watermark even though there is a significant distortion in the 
watermarked image. The correlation detection method in this paper is a relative measure 
rather than an absolute measure as in [2]. 

This paper is organized as follows. In Section 2, we briefly review some basics 
on discrete wavelet transforms (DWT). In Section 3, we propose our new watermarking 
method based on the DWT. In Section 4, we implement some numerical experiments in 
terms of several different image distortions, such as, additive noise, rescaling/stretching, 
image compression with EZW coding and halftoning. 

2.    Discrete Wavelet Transform (DWT): A Brief Review 

The wavelet transform has been extensively studied in the last decade, see for example [9- 
16]. Many applications, such as compression, detection, and communications, of wavelet 
transforms have been found. There are many excellent tutorial books and papers on 
these topics. Here, we introduce the necessary concepts of the DWT for the purposes of 
this paper. For more details, see [9-15]. 

The basic idea in the DWT for a one dimensional signal is the following. A 
signal is split into two parts, usually high frequencies and low frequencies. The edge 
components of the signal are largely confined to the high frequency part. The low fre- 
quency part is split again into two parts of high and low frequencies. This process is 
continued an arbitrary number of times, which is usually determined by the application 
at hand. Furthermore, from these DWT coefficients, the original signal can be recon- 
structed. This reconstruction process is called the inverse DWT (IDWT). The DWT 
and IDWT can be mathematically stated as follows. 

Let 
H(w) = Y, he-jk",   and G(u) = £ gke-sku. 

k k 
bo a lowpass and a highpass filter, respectively, which satisfy a certain condition for 
reconstruction to be stated later. A signal, x[n] can be decomposed recursively as 

CJ-l.fc      =      Z-,hn-2kCj,n (1) 
n 

dj-i,k      =      2jffn-2JfcCj.n (2) 
n 

for j — J + l,J,...,Jo where cj+ i,jt = x\k], k € Z, J + l is the high resolution level index, 
and Jo is the low resolution level index. The coefficients cj0tk,dj0tk,dj0+itk, ■■■,djtk are 
called the DWT of signal x[n], where cj0,jt is the lowest resolution part of x[n] and djtk 
are the details of x[n] at various bands of frequencies. Furthermore, the signal x[n] can 
be reconstructed from its DWT coefficients recursively 

Cj,n - 2j/ln-2fcCj_i,jt + 2_, 9n-2kdj-l,k- (3) 
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Figure 1.      DWT for one dimensional signals. 
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Figure 2.      DWT for two dimensional images. 

The above reconstruction is called the IDWT of x[n}. To ensure the above 
IDWT and DWT relationship, the following orthogonality condition on the filters H{u)) 

and G(u) is needed: 
|tf Ml2 + |GH|2 = l. 

An example of such H(LJ) and G(u>) is given by 

ffM = i + ie-*",   andGM 1 1 
 e 
2 2 

-jw 
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which axe known as the Haar wavelet filters. 
The above DWT and IDWT for a one dimensional signal x[n] can be also de- 

scribed in the form of two channel tree-structured filterbanks as shown in Fig. 1. The 
DWT and IDWT for two dimensional images x[m, n] can be similarly defined by imple- 
menting the one dimensional DWT and IDWT for each dimension m and n separately: 
DWTn[DWTm[x[m,n]}\, which is shown in Fig. 2. An image can be decomposed into 
a pyramid structure, shown in Fig. 3, with various band information: such as low-low 
frequency band, low-high frequency band, high-high frequency band etc. An example 
of such decomposition with two levels is shown in Fig. 4, where the edges appear in all 
bands except in the lowest frequency band, i.e., the corner part at the left and top. 

LL3 HL3 

HL2 

LH3 HH3 

LH2 HH2 

LH! HHj 

Figure 3.      DWT pyramid decomposition of an image. 

DWT 
to 
00 0 
0 D 

Figure 4.      Example of a DWT pyramid decomposition. 

3.    Watermarking in the DWT Domain 

Watermarking in the DWT domain is composed of two parts: encoding and decoding. 
In the encoding part, we first decompose an image into several bands with a pyramid 
structure as shown in Figs. 3-4 and then add a pseudo-random sequence (Gaussian 
noise) to the largest coefficients which are not located in the lowest resolution, i.e., the 
corner at the left and top, as follows. Let y[m,n\ denote the DWT coefficients, which 
are not located at the lowest frequency band, of an image x[n,m}. We add a Gaussian 
noise sequence N[m,n] with mean 0 and variance 1 to y[m,n]: 

y[m,n} = y[m,n} + ay2[m,n]N[m,n] (4) 

where Q is a parameter to control the level of the watermark, the square indicates the 
amplification of the large DWT coeffcients. We do not change the DWT coefficients at 
the lowest resolution. Then, we take the two dimensional IDWT of the modified DWT 
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coefficients y and the unchanged DWT coefficients at the lowest resolution. Let x[m, n] 
denote the IDWT coefficients. For the resultant image to have the same dynamic range 
as the original image, it is modified as 

x[m,n] = min(max(x[m,n]),max{x[m,n],min(a;[m,n])}). (5) 

The operation in (5) is to make the two dimensional data x[m, n] be the same dynamic 
range as the original image x[m,n]. The resultant image x[m,n\ is the watermarked 
image of x[m,n}. The encoding part is illustrated in Fig. 5(a). 

Insert 
watermarks 

Original 
image 

Watermarked 
image 

Insert 
watermarks■ Gaussian 

noise 

(a): Encoding 

Watermarked 
image 

D 
O 
O 

W^H corre ./"*• there 
V   J a neak? 

o 
D 

t 
Original 
watermark 

No 

Continue 

Figure 5. 

(b):   Decoding 

Watermarking in the DWT domain. 

The decoding method we propose is hierarchical and described as follows. We 
first decompose a received image and the original image (it is assumed that the original 
image is known) with the DWT into four bands, i.e., low-low (LLi) band, low-high 
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(LHi) band, high-low (HLi) band, and high-high {HH{) band, respectively. We then 
compare the signature added in the HH\ band and the difference of the DWT coeffi- 
cients in HHi bands of the received and the original images by calculating their cross 
correlations. If there is a peak in the cross correlations, the signature is called detected. 
Otherwise, compare the signature added in the HHi and LH\ bands with the difference 
of the DWT coefficients in the HHi and LE\ bands, respectively. If there is a peak, the 
signature is detected. Otherwise, we consider the signature added in the HL\, LH\, and 
HH\ bands. If there is still no peak in the cross correlations, we continue to decompose 
the original and the received signals in the LL\ band into four additional subbands LL2, 
LH2, HL>2 and HH2 and so on until a peak appears in the cross correlations. Otherwise, 
the signature can not be detected. The decoding method is illustrated in Fig. 5(b). 

4.    Numerical Examples 

We implement two watermarking methods: one is using the DCT approach proposed 
by Cox el. al. in [2] and the other is using the DWT approach proposed in this paper. 
In the DWT approach, the Haar DWT is used. Two step DWT is implemented and 
images are decomposed into 7 subbands. Watermarks, Gaussian noise, are added into 
all 6 subbands but not in the lowest subband (the lowest frequency components). In 
the DCT approach, watermarks (Gaussian noise) are added to all the DCT coefficients. 
The levels of watermarks in the DWT and DCT approaches are the same, i.e., the total 
energies of the watermark values in these two approaches are the same. It should be 

' noted that we have also implemented the DCT watermarking method when the pseudo- 
random sequence is added to the DCT values at the same positions as the ones in the 
above DWT approach, i.e., the middle frequencies. We found that the performance is 
not as good as the one by adding watermarks in all the frequencies in the DCT domain. 

Two images with size 512 x 512, "peppers" and "car," are tested. Fig. 6(a) 
shows the original "peppers" image. Fig. 6(b) shows the watermarked image with the 
DWT approach and Fig. 7(a) shows the watermarked image with the DCT approach. 
Both watermarked images are indistinguishable from the original. A similar property 
holds for the second test image "car," whose original image is shown in Fig. 8(b). 

The first distortion against which we test our algorithm with is additive noise. 
Two noisy images are shown in Fig. 7(b) and Fig. 8(a), respectively. When the variance 
of the additive noise is not too large, such as the one shown in Fig. 7(b), the signature 
can be detected only using the information in the HH\ band with the DWT approach, 
where the cross correlations are shown in Fig. 9(a) and a peak can be clearly seen. 
When the variance of the additive noise is large, such as the one shown in Fig. 8(a), 
the HH\ band information is not good enough with the DWT approach, where the 
cross correlations are shown in Fig. 9(b) and no clear peak can be seen. However, the 
signature can be detected by using the information in the HH\ and LH\ bands with 
the DWT approach, where the cross correlations are shown in Fig. 9(d) and a peak 
ran be clearly seen. For the second noisy image, we have also implemented the DCT 
approach. In this case, the signature with the DCT approach can not be detected, where 
the correlations are shown in Fig. 9(c) and no clear peak can be seen. Similar results 
hold for the "car" image and the correlations are shown in Fig. 10. 

The second "test" distortion is rescaling/stretching for "peppers" and "car" 
images, three types of rescaling/stretchings are implemented. In the first two imple- 
mentations, the rescaled/stretched images are rescaled back to the same size of the 
original image using interpolations, where 25% reduction/enlargement is used. In the 
third implementation, the stretched images are simply cut back to the original size, 
where 1% and 2% stretching is used. 

In the rescaling, an image, x, is reduced to 3/4 of the original size. The method of 
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the rescaling is from the MATLAB function called "imresize." as imresize (x, 1-1/4, 
'method') where 'method' indicates one of the methods in the interpolations between 
pixels: piecewise constant, bilinear spline, and cubic spline. With the received smaller 
size image, for the watermark detection we extend it to the normal size, i.e., 512 x 512, 
by using the same Matlab function "imresize" as imresize(y, 1+1/3, 'method'), 
where 'method' is also one of the above interpolation methods. In this experiment, we 
implemented two different interpolation methods in imresize in the rescaling distor- 
tion: the piecewise constant method and the cubic spline method. In the detection, we 
alway use the cubic spline as imresize(y, 1+1/3, 'bicubic'). Similar results also 
hold for other combinations of these interpolation methods. Fig. 11 illustrate the de- 
tection results for the "peppers" image: Fig. 11(a),(c) show the cross correlations with 
the DWT approach while Fig. 11(b),(d) show the cross correlations with the DCT ap- 
proach. In Fig. 11(a), (b), the rescaling method is imresize (x, 1-1/4, 'nearest'), i.e., 
the piecewise constant interpolation is used. In Fig. 11(c),(d), the rescaling method is 
imresize (x, 1-1/4, 'bicubic'), i.e., the cubic spline interpolation is used. One can see 
the better performance of the DWT approach over the DCT approach. Similar results 
hold for the "car" image and are shown in Fig. 12. 

When, in the above rescaling experiment, the size of an image is first reduced 
and then extended in the detection, in the stretching, an image is first extended and 
then reduced in the detection. The same Matlab function imresize as in the rescaling 
is used. In the stretching experiment, an image is extended by 1/4 of the original size, 
i.e., the MATLAB function imresize(x, 1+1/4, 'method'), is used, where 'method' 
is the same as in the rescaling. In the detection, the received image is reduced by 1/5 
to the original size, i.e., the Matlab function imresize(y, 1-1/5, 'method') is used. 
The rest is similar to the one in the rescaling. Figs. 13 and 14 show the correlation 
properties for the "peppers" and the "car" images, respectively. 

In the third implementation of rescaling/stretching, an image is first stretched 
by 1% and 2% using the MATLAB function imresize(y, 1+1/100, 'method') and 
imresize(y, 1+2/100, 'method'), respectively. The stretched image is then cut back 
to the original size. Two images "peppers" and "car" are tested. Figs. 15-16 shows the 
correlation properties for the "peppers" and the "car" images, respectively, where (a) 
and (b) are for the 1% stretching, and (c) and (d) are for the 2% stretching. 

The third "test" distortion is image compression. Two watermarked images with 
the DWT and DCT approaches shown in Fig. 6(b) and Fig. 7(a) are compressed by us- 
ing the EZW coding algorithm. The compression ratio is chosen as 64, i.e., 0.125&pp. 
With these two compressed images, the correlations are shown in Fig. 17 (a) and (b), 
where a peak in the middle can be clearly seen in Fig. 17(a) with the DWT approach, 
but no clear peaks can be seen in Fig. 17(b) with the DCT approach. This is not very 
surprising because the compression scheme is not suitable for the DCT approach. It 
should be noticed that the wavelet filters in the EZW compression are the commonly 
used Daubechies "9/7" biorthogonal wavelet filters while the wavelet filters in the wa- 
termarking are the simpliest Haar wavelet filters mentioned in Section 2. 

The last "test" distortion is halftoning. The two watermarked images in Fig. 
6(b) and Fig. 7(a) are both halftoned by using the following standard method. Let 
zjm.n] be an image with 8 bit levels. To halftone it, we do the nonuniform thresholding 
through the Bayer's dither matrix T [17]: 

11     7     10    6   \ 
,    3     15    2     14 

T = (TJ,fc)4x4 - 16 |    9     5     12    8 

1     13    4     16 j 
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in the following way. Compare each disjoint 4x4 blocks in the image x[m, n]. If x[m * 
4 + j, n * 4 + k] > Tj,fc, then it is quantized to 1, and otherwise it is quantized to 0. 
Both DWT and DCT watermarking methods are tested. Surprisingly, we found that the 
watermarking method based on DWT we proposed in this paper is more robust than 
the method based on the DCT in [2-3]. The correlations are shown in Fig. 18(a) and 
(b), where (a) corresponds to the DWT approach while (b) corresponds to the DCT 
approach. One can clearly see a peak in the middle in Fig. 18(a) while no any clear peak 
in the middle can be seen in Fig. 18(b). In this experiment, the watermark was added 
to the middle frequencies in the DCT approach and no inverse halftoning was used. 

5. Conclusion 

In this paper, we have introduced a new multiresolution watermarking method using the 
discrete wavelet transform (DWT). In this method, Gaussian random noise is added to 
the large coefficients but not in the lowest subband in the DWT domain. The decoding is 
hierarchical. If distortion of a watermarked image is not serious, only a few bands worth 
of information are needed to detect the signature and therefore computational load can 
be saved. We have also implemented numerical examples for several kinds of distortions, 
such as additive noise, rescaling/stretching, compressed image with the wavelet approach 
such as the EZW, and halftoning. It is found that the DWT based watermark approach 
we proposed in this paper is robust to all the above distortions while the DCT approach 
is not, in particular, to distortions, such as compression, rescaling/stretching (1%, 2%, 
and 25% were tested), and additive noise with large noise variance. 
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Figure 7.      (a) Watermarked image using DCT; (b) Watermarked image with low 
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Figure 8.      (a) Watermarked image with high additive noise; (b) Original "car" 
image. 
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Figure 9. Correlations for watermark detection for the "peppers" image: (a) DWT 
with HH\ band for low additive noise; (b) DWT with HH\ band for high additive 
noise; (d) DWT with HH\ and LH\ bands for high additive noise; (c) DCT for 
high additive noise. 
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Figure 10. Correlations for watermark detection for the "car" image: (a) DWT 
with HH\ band for low additive noise; (b) DWT with HH\ band for high additive 
noise; (d) DWT with HH\ and LH\ bands for high additive noise; (c) DCT for 
high additive noise. 
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Figure 11. Correlations for watermark detection for the rescaled "peppers" image: 
(a) and (b) piecewise constant interpolation in the rescaling and (a) DWT (b) DCT; 
(c) and (d) cubic spline interpolation in the rescaling and (c) DWT (d) DCT. 
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Figure 12. Correlations for watermark detection for the rescaled "car" image: (a) 
and (b) piecewise constant interpolation in the rescaling and (a) DWT (b) DCT; 
(c) and (d) cubic spline interpolation in the rescaling and (c) DWT (d) DCT. 
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Figure 13. Correlations for watermark detection for the stretched "peppers" im- 
age: (a) and (b) piecewise constant interpolation in the rescaling and (a) DWT (b) 
DCT; (c) and (d) cubic spline interpolation in the rescaling and (c) DWT (d) DCT. 
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Figure 14. Correlations for watermark detection for the stretched "car" image: 
(a) and (b) piecewise constant interpolation in the rescaling and (a) DWT (b) DCT; 
(c) and (d) cubic spline interpolation in the rescaling and (c) DWT (d) DCT. 
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Figure 15. Correlations for watermark detection for the stretched "peppers" im- 
age: (a) and (b) 1% stretching and (a) DWT (b) DCT; (c) and (d) 2% stretching 
and (c) DWT'(d) DCT. 
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Figure 16. Correlations for watermark detection for the stretched "car" image: 
(a) and (b) 1% stretching and (a) DWT (b) DCT; (c) and (d) 2% stretching and 
(c) DWT (d) DCT. 
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Figure 17.       Correlations for watermark detection for compressed images:  (a) 
DWT; (b) DQT. 
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Figure 18.     Correlations for watermark detection for halftoned images: (a) DWT; 
(b) DCT. 
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PROOF   The authors [1] assumed that both the target 
relative position and relative speed are uniformly 
distributed between 0 to 60 km and -40 to 40 m/s, 
respectively. Let us derive the variance of uniform 
distributed variable. The uniform probability density 
function (pdf) is defined by [2] 

b — a 
- 0       otherwise 

for real constants -DO < a < oc and b > a. Fig. 1 
illustrates the behavior of the above function. 
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In case of relative range, x component b = 60sin/30, 
a = 0 and v component b = 60cos,30, a = 0. Hence 
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[2]     Peebles. P. Z..Jr UW) 
Probability; Random Variables and Random Signal 
Processmi: 
New York  McGraw-Hill International. 1987. 

Doppler Ambiguity Resolution Using Optimal 
Multiple Pulse Repetition Frequencies 

Ferrari, Berenguer, and Aiengrin recently proposed an 

algorithm for velocity ambiguity resolution in coherent pulsed 

Doppler radar using multiple pulse repetition frequencies (PRFs). 

In this algorithm, two step estimations (folded frequency and 

ambiguity order) for the Doppler frequency is used by choosing 

particular PRF values. The folded frequency is the fractional part 

of the Doppler frequency and is estimated by averaging the folded 

frequency estimates for each PRF. The ambiguity order is the 

integer part of the Doppler frequency and is estimated by using 

the quasi-maximum-likelihood criterion. The PRF are grouped 

into pairs and each pair PRF values are symmetric about I. The 

folded frequency estimate for each pair is the circular mean of the 

two folded frequency estimates of the pair due to the symmetry 

property. 

We propose a new algorithm based on the optimal choice 

of the PRF values, where the PRF values are also grouped into 

pairs. In each pair PRF values, one is given and the other is ' 

optimally chosen. The optimally is built upon the minimal 

sidelobes of the maximum likelihood criterion. Numerical 

simulations are presented to illustrate the improved performance. 

I.    INTRODUCTION 

Multiple pulse repetition frequency (PRF) is 
commonly used in modern-day radars for the velocity 
ambiguity resolution in coherent pulsed Doppler 
radars, see for example [1-4]. In this approach, the 
conventional method for achieving the ambiguity 
resolution is to search for the coincidence between 
unfolded Doppler frequency estimates for each 
PRF, see for example [2-4]. Since the Doppler 
frequency may take all possible real values in a 
range and infinite many trials are needed for all 
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Fig   1.    Multiple PRF waveform. 

the possibilities of the Doppler frequency, it maybe 
impossible to have an exact match. Thus, estimation 
errors usually occur. Based on this observation, a 
two step estimation algorithm has been proposed in 
[ 1 ] by Ferrari, Berenguer, and Alengrin. The basic 
idea for the two step estimation is the following. 
The Doppler frequency is decomposed into two 
parts: the folded part, i.e., the fractional pan modulo 
1, and the ambiguity order part, i.e., the integer 
part. By grouping the PRFs into pairs where each 
pair is symmetric about 1, the folded part is the 
"circular mean" [5] of the folded estimates of the pair 
PRFs. This circular averaging is the first step of the 
algorithm in [1]. After the folded part is estimated, 
the second step is to find the match of the ambiguity 
order. By noticing that the ambiguity order takes 
integer values, there are only finite many possible 
trials needed ranging from the minimal and the 
maximal possible ambiguity orders. Therefore, the 
exact estimation of the Doppler frequency becomes 
possible with the two step estimation. Note that the 
key of this method is to convert the infinite many trials 
to the finite many trials, by converting a general real 
number matching to an integer matching. 

The motivation for this paper is as follows. Since 
the specific PRF pairs, which are symmetric about 
1, are needed in the Ferrari-Berenguer-Alengrin 
approach, it may reduce the detectability of using the 
maximum likelihood criterion to detect the peak or 
the match. It is because the sidelobes of the maximum 
likelihood function with the specific PRFs may not 
be as low as the one with other PRFs. The motivation 
of this work is to relax the above PRF condition in 
the following way: one of each pair PRFs is fixed and 
the other of the pair is optimally determined based 
on the lowest sidelobes of the maximum likelihood 
function. With this relaxization, the "circular mean" 
estimation of the folded frequency may not be as good 
as the one in [1]. We propose an alternative approach 
to achieve the folded frequency estimation as follows. 
We first take the conventional mean of the folded 

frequency estimates in each pair. The true folded 
frequency falls in a finite number of possibilities from 
the conventional mean. These finite possibilities of 
the folded frequency can be obtained when the PRF 
pairs are known. Since the ambiguity order has also 
finite possibilities, the overall folded frequency and 
the ambiguity order have finite possibilities. This 
suggests us to estimate both the folded frequency 
and the ambiguity order simultaneously based on 
the maximum likelihood criterion. What is gained 
here is the detectability improvement of the Doppler 
frequency while the penalty is the increase of the 
computational complexity with a multiple of the 
one in f 1] due to more possibilities to search for. the 
folded frequency. . 

This paper is organized as follows. In Section II, 
we briefly review the Ferrari-Berenguer-Alengrin 
approach proposed in [1]. In Section III, we 
study the optimal PRF method. In Section IV, we 
present numerical examples which outperform the 
Ferrari-Berenguer-Alengrin method. 

II.    THE FERRARI-BERENGUER-ALENGRIN TWO 
STEP ESTIMATION METHOD 

First of all, we briefly describe the problem. Let 
radar transmit 2^ bursts of ns pulses, where the PRF 
of the Jtth burst is assumed Fr(k), 1 <k<2Nb. The 
time difference between two pulses in the Jfcth burst is 
Tr{k) = 1 /Fr(k). It is assumed that the elapsed time 
between the last pulse of the Jtth burst and the first 
one of the (Jk + l)th burst is Tr(k). The time delays 
Tr(k) are assumed as 

Tr(k) = (1+*k) Tr (1) 

where N(l),N(2),...,N(2Nb) are integers and Tr is 
usually assumed as 1 for simplicity. The multiple PRF 
waveform is shown in Fig. 1. 

After coherent demodulation, the received data 
at the nth sample, 0 < n < ns - 1, in the ifcth burst, 
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1 < k < 2Nb, becomes 

yk(n) = xk(n) + bk(n) = ak(fD)exp(j2-fDnTr(k)) + bk(n) 

(2) 

where fD is the unknown Doppler frequency, bt(n) 
is white noise-from the contribution of both thermal 
noise and clutter whitened residue, and ak(fD) contains 
the initial phase of the target signal on the Jtth burst. If 
«|(/D) = A, then we have 

ak[fD) = ,4exp I j2-nJDYTr{q)    ,        k>2. 

(3) 

Then the ambiguity resolution problem is to estimate 
the Doppler frequency fD from the noisy data yk(n) in 
(2). It is usually assumed that fD is in a certain range, 
i-c. I/I < /max. The conventional detection method is 
the following maximum likelihood estimation. Find 
fD that maximizes the following maximum likelihood 
function 

\2N>n,-\ i2 

L(f] = '■T.Y.y^m^a'k(J')^P(-j2nfmTr(k))\ 
' k = ] m = 0 I 

(4) 

i.e., 

HJD) =  max L(f) 

where ak(J) takes the form (3) with fD replaced by 

/ and ;/Di < fmax. This is a matching process and / 
needs to run all real numbers from -/„„ to /!„. J max        J max 

Clearly, it has infinite many trials and therefore is 
impossible to have an exact match. 

In [1], Ferrari-Berenguer-Alengrin proposed an 
alternative two step approach for the above problem 
without implementing infinite many trials, where 
particular N(k) in (1) were used. We next want to 
briefly describe this two step approach. 

Let S(2p + 1) be a positive integer and set 

N(2p + 2) = -N(2p+\\       for   p = 0,1 Nb-l. 

(5) 

The Doppler frequency fD is decomposed into its 
integer part (the ambiguity order) nr and fractional 
part (the folded or reduced frequency) fr as 

/o =/, + ",       w>*   0</f<l. (6) 

Then (2) becomes 

>*(") = at(/0)exp (;2JT (f, + J^j n) + bk(n). 

0<n<ns-l.       (7) 

Let 

•i ,       fD /;=/,+ Nik)' 
l<k<2Nb. (8) 

If fk could be obtained from yk(n). 0 < n < n, - 1, 
in (7), by using N(2p + 2) = -N(2p + 1) in (5), the 
reduced frequency fr would be 

Jr  ~ -. 0 < p < Nb - 1. (9) 

From yk(n) in (7) what we can get for fk is, however, 

its folded version fk, i.e., 

fk = fk+l,       / is an unknown integer and 0 < fk < 1. 

(10) 

In this case, the_ reduced frequency fr cannot be 
obtained from fk by simply taking their mean as 
(fip+\ +/2p*2)/2- However, when 

i/2^1 -/2/,+2l <0.5 (11) 

the reduced frequency fr can be recovered from fk by 
taking the "circular mean" [5] as 

fr{p) = — angle[expO'2-/2p+1) + expO'2jr/2,+2)] 

(12) 

where angle(;) is the phase angle in radians in [0,27T) 

of the complex number z. With total Nb pairs of fk, the 
overall estimate of the reduced frequency fr is 

1 'V1-' 
fr = ^gk T, ™PU2iTfr(p)). (13) 

p=0 

When the Doppler frequency / in (4) is split into 
its reduced frequency part / (without confusion in 
understanding we also use / to denote the reduced 
frequency) and its ambiguity order part n, the 
maximum likelihood function in (4) can be written 
as 

I 2N„ n, - I 
L(/.»)=EI^fflK(/.«) 

I k=\ m=0 

exp(-y'2ir(/ + n)mTr(k)) 

2Ai n,-l 

Y, W ") Y, >^m) ^V(-J2nfmTr(k)) 
i = l m=0 

■exp (-J2nmm) (14) 

CORRESPONDENCE 373 



m, 
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R  i 

where at(f,n) corresponds to the term </4(/) in (4) 
and can be expressed as 

<':P+i(/-"> = exP02-/"(2/>) (15) 

a2p.3i A.« = exp I y2-/»t ( 2p + 1 + —;^ 

exp   yz-/!_t /V(2p+ 1) 
(16) 

After the reduced frequency fr is estimated as in (13), 
the maximum likelihood function L(f,n) for both / 
and n is reduced to the one for the ambiguity order n 
only: 

L(n) = L{fr,n) 

iv„ «»-I 

= .^ai(^'n)5I>'t('")eXp(_J'27r^A"7'r(^ 
i = l m=0 

exp   -;2rr 
AW 

(17) 

•max t0 "max ^d where ri ranges all integers from -nn 

"max IS tne maximum ambiguity order corresponding 
to the maximum Doppler frequency fnax. Thus, the 
searching of the Doppler frequency fD from all the 
real numbers \f\ < /max to maximize L(J) in (4) 
becomes the searching of the ambiguity order n 
from all integers \n\ < nmiX to maximize L(n) in (17). 
Note that there are only finite many possibilities of 
n, which makes the exact coincidence of the true 
ambiguity order possible. Let nr denote the optimal 
ambiguity order estimate from L(n) in (17). Then the 
final Doppler frequency estimate is 

fD=fr+"r- (18) 

The reason for choosing N(k) as integers in the 
whole approach is to use the discrete Fourier 
transform (DFT) calculations in (17) for the maximum 
likelihood function evaluations. For more details on 
the implementation issue, see [1]. 

The above is the main idea for the Ferrari- 
Berenguer-Alengrin two step estimation method. We 
call it FBA mettwd. It is built upon the assumption (5) 
and the condition (11). Condition (11) guarantees the 
accurate reduced frequency estimation and leads to the 
following condition on N(k): 

|AWi>4(l+nm„),        \<k<2N„ (19) 

where nmiX is the maximum ambiguity order. Clearly, 
when n^ is large, \N(k)\ needs to be large. Large 
\N(k)\ may increase ambiguity order errors as 
mentioned in [1]. One way to relax the condition 
(11) or (19) is as follows, which also serves as a 
foundation for the optimal multiple PRF discussed 
latter. 

Assume 

fo 
N\k) 

< 1.        i.e.,    :N(k)\ > 1 +n„ (20) 

In this case, although the circular mean (12) may not 
be equal to the reduced frequency fr in (8), fr takes 
one of the following five values: 

fr(P).       /,(/»-0.5.       /r0» + 0.5. 

/,(/>)-1,       fr(p)+l 

where fr(p) is the conventional mean,  fr(p) = 

(hp+i +/2p+2)/'2> a™1 /* ^e obtained from (7) 
and (10). It is because the unknown parameter / in 
(10) may only take 0, -1 or 1, when the condition 
(20) holds and 0 < fr < 1. Thus, when Nb = 1, the 
estimation of fr and nr become the search of the 

optimal fr(p) and nr in the maximum likelehood 
function L(fr,n) in (14) among 

/, G S(p) = {Jr(p)Jr(p) - 0.5,fr(p) + 0.5, 

(2h 

/,(/>)-!./»+!} (22) 

and !n| < n —    max" 

L(fr(p),rir) =       max       L(J,n) 
f€S(.p)„n,<n^ 

(23) 

which also has only finite comparisons. 
When Nb > \, there are at least two methods to 

take the advantage of this multiplicity. One is to 
take the circular mean of all the above estimated 
fr(p) as in (13). The other is to search the optimal 
/ among all possible elements in the sets S(p) for 
p = 0,l Nb-l: 

L(fr,nr)=     max     L(f,n) 
/€5.i/ii</imiI 

(24) 

where 

S = U S(p). 
p=0 

Note that the condition (20) can be further relaxed by 
allowing more possibilities for the reduced frequency 
fr from the mean fr. Thus, the size of N(k) can 
basically be arbitrary. The detection method in 
(20)-(24) is called modified FBA method. On the other 
hand, the condition (5) may cause high sidelobes of 
the maximum likelihood function L{Jr,n) in (14) and 
therefore reduce the performance when additive white 
noise bk(n) in (2) is significant. The goal of the rest of 
this paper is to relax the condition (5) and search for 
the optimal linear relationship between N(2p + 1) and 
N(2p + 2) instead of N(2p + 2) = -N(2p + 1). 

It should be mentioned that another difference 
between the FBA method and the above modified 
FBA method is the following. In the FBA method, 
the angular mean is taken over the A^ bursts as shown 
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in (13), while, in the modified FBA method, the 
multiplicity of the bursts gives more possibilities to 
search for the correct folded frequency. The angular 
mean may reduce the error variance of the reduced 
frequency, while the more possibilities of the search 
may provide more accurate estimate of the reduced 
frequency. However, the latter one clearly causes more 
computations. 

III.    OPTIMAL MULTIPLE PRF AND DOPPLER 
FREQUENCY DETECTION 

In this section, we use the same signal model as 
described in Section II, where the assumption (5) is 
relaxed as 

N(2p + 2) = -QpN{2p+l), 

for   p = 0,l Nb-\        (25) 

where N(2p + 1) are positive integers and ap are 
positive real parameters. The goal of the rest of this 
paper is to optimally determine the parameters ap 

given N(2p+ 1) for p = 0, \,...,Nb - 1 in terms of the 
lowest sidelobes of the maximum likelihood function 
L(f.n). 

With (25), an analogous formula of (9) for the 
reduced frequency is 

/,= 
hp~\ +Qphp*i 

1 + Q„ 
p = 0,l A;-I 

(26) 

where fk are defined in (8). One can see that the 
conventional mean (9) with the property (5) becomes 
the conventional weighted mean (26) with the 
property (25). The circular mean in (12), however, 
cannot be generalized to the general setting of the 
parameters ap. In other words, the reduced frequency 
/, can not be obtained as in the FBA method from 

the estimated individual fk in (8), (10), and (25) 
with general parameters ap unless ap = I using the 
periodogram method. Fortunately, the argument in 
(20M24) can be generalized as follows. 

Without loss of generality, we assume the property 
(20), i.e.. 

iV(2p+ 1)> 1 +nn 

|A'(2p + l)|> 
1 +nn 

a„ 

and 

p = 0,l Nb-\. 

(27) 
Let 

T       ^A flp+\ +apflp+2 n  , »/i 

(28) 

where fk are obtained from (7), (8), and (10) 
with N(k) satisfying (25) instead of (5). For p = 

0,1 fy-l.let 

S(p) = {fr(p).fr(p)- 
1 + < 

1      - '>„ 
•fr(P) ± " 1   +, 

fr(p)=\-^,fr(p)±\ 
1     +   "r. 

(29) 

When ap = 1, the set S(p) in (29) is the same as the 
set S(p) in (22). Similar to (21), we have 

fr£S(p).       p = 0,l Nb-l. (30) 

Let 

(31) 
Nt-I 

S = (J S{p). 
p=0 

Then the maximum likelihood estimates for the 
reduced frequency fr and the ambiguity order nr are fr 

and hr that maximize L<J,n) for / € S and \n\ < nmax, 
i.e., 

L{fr,nr)=     max    L(/,AI) (32) 
ftS.n <nw 

where L(J,n) is similar to (14): 

! 2Ai n,-l 

Uf,n) = \Y,aUf,n)$2yk(m)exp{-j2xfmTr(k)) 
ii = l m=0 

tKp(-j2*mm)\ (33) 

where 

t-i 

akif,n) = Aexpl j2~ns(J + n)]TTriq) 

Tr{q) = 1 + 

(34) 

Niq) 

and yk(m) are the demodulated noisy data at the 
receiver: 

ykim) = akifr,nr)expij2wfrmTrik)) 

•expfy2jr^mj+64(m) (35) 

where fD = fr + nr is the unknown Doppler frequency 
and bk(m) are additive^white noise. The final Doppler 
frequency estimate is fD = fr + hr. 

The performance of the above detection method 
depends on the property of the maximum likelihood 
function Lif,n). The lower sidelobes of Lif,n) 
are, the better performance of the detection is. The 
sidelobes depend on the choice of the parameters a 
in (35), when Ni2p + 1) are given. We next want to 
discuss the optimal choice of these parameters. 
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By substituting (34)-(35) into (33). we have 

",£txPlj2zir,-f>>nTrik))c*p{j2rn-j^m}) 

,„-o 

= !Ai:;f>P [72™,./, -/♦», -«>x>*> 

■exp^n.-l)^-/)^*)*^)) 

0 1    .,N6 - 1. and nma,. the optimal parameters «,. 
= 0 1      ,N ~\. can be obtained by minimizing 

(he cost'function E,ldeIl,,>„.<»i <H-i> >" (39) for 

np > 0, i.e., 

E,,Jdobel"«'"l <».%;-1> 

mm ^.Jela^"!)-"! °.v-i> 
Q0>O0.OI >a, 0^-1 >"s-i 

(40) 
where, by (27), 

fl„ = 
1 + «« 

p     N(2p+\)' 

One may see that an explicit solution for the optimal 
n _n o   is not possible. However, any existing optimization 

»n f ™, [</, -/>7><*> * %jIT!) ■*■ ,,w    methods work for the above problem. 
^      I -n _wi"\ '' ■ v    ' » — ••- /-«ncJHor the «imnliest case. Let us consider the simpliest case, Nb = 1. In this 

case, 

Clearlv, the mainlobe value of the above maximum 
likelihood function is its value when / - /, and 

n~n'' L(fr,nr) = \A\22Nbns. (37) 

S.nce /, € Sip), the offset value /r - / in (36) may 
only take the values in the following set, when f £ i> 

defined in (30): 

A
,v'"'f ±1        ±2       ±CX

P 
S„^= U\±1<±2,TT^,'n^;'i+Q/ 

±2ap   ±(\-op) ±2(1-o,)^ 

\+ap      1+Qp   '     1+Q/> 

±(l±2o,)  ±(2±o,)\ 

1+Qp      '      l+Olp     I 

The offset value nr - n is in the set 

^ Ut f^Qü^i Q*-i> den0tC *' t0tal 

energv of all the sidelobe values of the maximum 
likelihood function L(J,n) in (36). Then, by 
normalizing A = 1 it can be expressed by 

£>,deiot*(Qo-Qi Q.v.-i>=   Y,      £ 
/e5„(r«,0<ii<2«~. 

Al „     ±1 ±2        ±Qo <-      -J ± 1 ±2, 
'offset-,|   ^ ,'^' 1 +Q0' 1 +Q0' 1 +Q0' 

±2Q0   ±(1-QQ) ±2(1-O0^ 

1+Q0'     1+Q0    '      1+Q0 

±(1±2Q0) ±(2±a0)\ (41) 

1 + Q0     '     1 + Q0 

and 

£"Sid*iobc(Qo)=  zJ     Y 

I sin 1 nn 

(38) 

('"- \f{l + m)* w)\) 

exp ^K - 1) [/ (l " ^TJj j " ^(Tjj J 

sin   irn 

""("^('"S^ü))    <W(i)J) 
(42) 

Let us see some numerical examples of 
£    lobe(o0). Consider tf (1) = 40 and ns = 12. Figs. 2, 
3,S'and 4 show the £sidelobe(o0) versus o0 when nm„ - 
3 5 and 12, respectively. One can see that the optimal 

|gexp(;2,nj(/^)i:(1 + ^))) 
■**>        V ,= 1 ' 3 5 and 12, respectively. Une can see uiai me uFui... 

/ 7i7i       !   \. JL.^ o« strongly depends on the maximal ambiguity order 
exp ( ;*(*, - 1) [f (l + ^j J + N(k))J n°   t where „e optimal Q0 are a0 = 0.57, 1.85, and 

,. i"n\ f~- „      =1  S and 12. respectively. 

sin^rn,  / ( 1 + ^j + jffi\) 

2m01 for n^ = 3, 5, and 12, respectively. 

(39)    IV.    NUMERICAL EXPERIMENTS 

v   L    x - In this section, we present numerical examples 
.      ^ Kin n ± n n - 0 1      M. - 1,      to compare the performances for the modified FBA 

XI(,2fs ;^ÄG,!Ä»:^   «*— - «*- «* *"-"PRFs 
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«    «0 

J7 

T T     "'       n r 

FiS  2    £.iddob«(V *hen *'(!) = 40. nt = 12. and nmax = 3. Optimal aQ = 0.57. 

2 2.5 1 

Fi?  3    £«dek*«<ao) when W) = 40, n3 = 12, and n^ = 5. Optimal o0 = 1.85. 

proposed in this work. The following parameters are 
used in our simulations: N(l) = 40, Nb = 1, ns = 12, 
and N(2) = -a0N(\), where Q0 = 1 for FBA method 
and Q0 the optimal Q0 for the method proposed in this 
work. The additive noise bk(n) in the known noisy 
radar data yk(n) in (2) is assumed white Gaussian 
noise with mean 0 and variance a2. As mentioned at 
the end of Section III, the optimal Q0 depends on the 
maximal ambiguity order nmiX. Two different n,^ 
are tested: nmix = 3 and 12. Let M be the number 
of signal realizations. Let fD(k) be the true Doppler 

frequency and fD(k) be the estimated one at the Jtth 
signal realization. Then the mean squared error (MSE) 
is calculated as 

_E£il/0(*)-/0(*)l2 

M 
MSE = (43) 

The signal-to-noise ratio (SNR) for the additive 
Gaussian noise is calculated by SNR = A2/a2, where 
A is the transmitted signal amplitude. 

When nmax = 3 and N(l) = -N(2) = 40 > 4(1 + 3) 
= 16, i.e., the condition (19) or (11) holds for the 
accurate circular mean formula (12). The FBA method 
works in this case although the parameter a = 1 
is not optimal in terms of the sidelobe values of 
the maximum likelihood function £side]obe(a0). The 
optimal parameter Q0 in this case is Q0 = 0.57 as 
studied in Section III. When Q0 = 0.57, clearly the 
number W(2) = -a^O) = 22.8 is not an integer. For 
the DFT computation purpose, rounding a = 0.57 to 
Q0 = 0.6 may be needed for W(2) to be an integer. 
When Q0 = 0.6, N(2) = -24. As mentioned in Section 
III, when Q0 ^ 1, the accurate circular mean no longer 
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      modified FBA method wtth optimal RPF 
modifwd FBA mttfxxl with rounded optWnil RPI 
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-i 0 

Fig  5    Comparison of reciprocal MSE of Doppler frequency esümations: FBA method and modified FBA method with optimal PRFs 
(or Q )  Solid line   modified FBA method with optimal <% - 0.57; dashdot line: modified FBA method with rounded optimal a„ = 0.6; 

• ° dashed line: FBA method. N(i) = 40, n, = 12, maximal ambiguity order «„„ = 3. 

holds. In this case, we use the modified FBA method 
for the Doppler frequency detection. 20,000 Monte 
Carlo tests are implemented, i.e., M = 20,000 in (43). 
Three curves are plotted in Fig. 5 for the reciprocal 
MSE. 1/MSE, of the Doppler frequency estimations. 
The solid line is for the modified FBA method with 
the optimal a = 0.57; the dashdot line is for the 
modified FBA method with the rounded Q0, 0.6; the 
dashed line is for the FBA method. A significant 
improvement of the MSE at the transition SNR band 
can be clearly seen. 

As a remark, when a0 = 1, the FBA method and 
the modified FBA method both work. From our 

numerous numerical examples, these two methods 
have the same performance in this case. 

When n^ = 12 and /V(l) = -/V(2) = 40 < 
4(1 + 12) = 52, i.e., the condition (19) or (11) for the 
accurate circular mean formula (12) does not hold. In 
this case, the FBA two step method does not work 
as shown in Fig. 6 and the modified FBA method 
should be used. The optimal parameter a0 is a0 = 
2.01. 10,000 Monte Carlo tests are implemented, i.e., 
M = 10,000 in (43). Similar to Fig. 5, three curves are 
plotted in Fig. 6 for the reciprocal MSEs. The solid 
line is for the modified FBA method with the optimal 
On = 2.01. The dashdot line is for the modified FBA 
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modified FBA method wtm optim»! RPF 
modified FBA m«tnod 
FBA method 

Fig  6.    Comparison of reciprocal MSE of Doppler frequency estimations: FBA method, modified FBA method, and modified FBA 
method with optimal PRFs (or o0). Solid line: modified FBA method with optimal Q0 = 2.01; dashdot line: modified FBA method; 

dashed line: FBA method. N(l) = 40, ns = 12, maximal ambiguity order nmM = 12. 

method with Q0 = 1. The dashed line is for the FBA 
method. From Fig. 6, one can clearly see that in this 
case the FBA method fails, and the modified FBA 
method with the optimal o0 outperforms the one with 
nonoptimal Q0. 

V    CONCLUSION 

In this paper, we studied the Ferrari-Berenguer- 
Alengrin's two step Doppler frequency detection 
method, where the folded frequency is first estimated 
using the circular mean and the ambiguity order is 
then estimated using the quasi maximum likelihood 
criterion. The accuracy of the folded frequency 
depends on the use of the particular pairs of PRFs. 
When the folded frequency is not equal to the circular 
mean, we modified the FBA method with a finite 
possibilities of the folded frequency and the ambiguity 
order. More importantly, we studied and formulated 
the optimal PRFs in the modified FBA method in 
terms of minimizing the total sidelobe energy of the 
maximum likelihood function. Bener performance of 
the modified FBA method over the FBA method was 
shown by numerical examples. 
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Abstract 

An N x K (N ^ K) ambiguity resistant (AR) matrix G(z) is an irreducible polyno- 
mial matrix of size N x K over a field F such that the equation EG(z) = G(z)V(z) with E 
an unknown constant matrix and V(z) an unknown polynomial matrix has only the 
trivial solution. E = aIN, V(z) = oJK, where a € F. AR matrices have been introduced 
and applied in modern digital communications as error control codes defined over the 
complex field. In this paper we systematically study AR matrices over an infinite field F. 
We discuss the classification of AR matrices, define their normal forms, find their 
simplest canonical forms, and characterize all (K + 1) x K AR matrices that are the 
most interesting matrices in the applications. © 1999 Elsevier Science Inc. All rights 
reserved. 

A MS classification: 15A21; 15A24; 94A12; 94B10; 94B12 

Keywords: Irreducible matrix; Ambiguity resistant matrix; Polynomial matrix; Error control coding 

1. Background and introduction 

An error control code defined over the complex field C maps each K input 
samples into N output samples, where N is usually greater than K so that the 
code is used to resist errors in a channel and the code is called N x K code. An 

Corresponding author. Tel.: 302 831-8038; fax: 302 831-4316; e-mail: xxia@ee.udel.edu. 
1 E-mail: gzhou@ee.udel.edu. 
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NxK linear error control code is usually represented by an N x K polynomial 
matrix G{z), where each entry of the matrix G{z) is a polynomial of the variable 
z (or the delay variable z~l in engineering) over complex field C. Let X(z) be a 
K x 1 polynomial matrix (or vector) as an input signal. Then Y(z) = G{z)X(z), 
is the N x 1 polynomial matrix (or vector) of the code output signal, which is 
usually transmitted through a real world channel, wired or wireless. In a , 
channel there are two common distortions. One is an additive random noise 
and the other is the so-called intersymbol interference (ISI). An additive ran- 
dom noise means that the received signal is Y(z) = G{z)X{z) + t](z) instead of 
7(z), where rj(z) is the polynomial vector of the additive noise. Notice that the 
above additive noise only affects each individual sample of the received signal. 
The ISI is another type of distortion in a channel, which is usually due to a high 
speed transmission and cause distortions between received samples. Mathe- 
matically, the ISI is an A/ x A^ polynomial matirx H (z) and the received signal is 

Y(z) = H(z)Y(z) = H(z)G(z)X(z), (1-1) 

where G(z) is an error control code. 
Resistance to an additive random noise means that the input signal X(z) can 

be restored from the received Y(z) distorted by an additive noise r\{z) without 
knowing t](z). To achieve this goal, the distance between codewords 
Y(z) = G(z)X(z) after an error control code plays the most important role, see 
for example Ref. [1], which is beyond the scope of this paper. Similarly, re- 
sistance to the ISI means that the input signal X{z) can be recovered from the 
received Y(z) in Eq. (1.1) distorted by an ISI H(z) without knowing H{z). To 
achieve this goal, ambiguity resistant (AR) matrices have been introduced in 
Refs. [6,7], which are based on the irreducibility of polynomial matrices defined 
over the complex field C. In this paper, a general infinite field F is considered. 
In what follows, F denotes an infinite field unless otherwise specified. 

The definition of irreducible polynomial matrices over F induced from Ref. 
[3] is as follows. 

Definition l.AnN xK (N^K) polynomial matrix G{z) over Fis irreducible if 
and only if there is no K x K polynomial matrix R(z) over F with non-constant 
determinant such that G(z) = Q(z)R(z), where Q{z) is an N x K polynomial 
matrix over F. 

The irreducibility can be characterized by the following lemma which offers an^ 
easy method to judge the irreducibility of a matrix when F is algebraically closed. 

Lemma 1. An N x K (N > K) polynomial matrix G(z) over an algebraically 
closed field F is irreducible if and only if it is full column rank (i.e., 
rank(G(z)) = K) for any z € F. 
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Remark 1. In Ref. [3] the definition of the irredücibility of a polynomial matrix 
over C is given by the necessary and sufficient condition in Lemma 1. However, 
when F is not algebraically closed, the irredücibility in Definition 1 is not 
equivalent to the necessary and sufficient condition in Lemma 1. As an 
example, polynomial matrix (z2 + l^z2 + 2)IN has full rank for any real z e R. 
It is, however, obviously reducible. 

Definition 2. An TV x K (N ^ K) irreducible polynomial matrix G(z) over F is 
called AR if and only if the following equation 

EG(z) = G(z)V(z) (1.2) 

with E an unknown constant matrix and V(z) an unknown polynomial matrix 
over F has only the trivial solution E = aJN, V{z) = oJK, where <xe¥,IN and IK 

are N x N and K x K identity matrices, respectively. 

It has been proved in Refs. [6,7] that, if the code G(z) in Eq. (1.1) over the 
complex field C is AR, then the input signal X(z) can be blindly recovered from 
the received signal Y(z) in Eq. (1.1), where the knowledge of the ISI channel 
H(z) is not necessary. Therefore, the resistance of the ISI can be achieved by 
choosing a code G(z) to be AR. 

Some necessary conditions for a code G(z) over C to be AR are given in Ref. 
[6], for example, G(z) is not a constant matrix, and N > K. Furthermore, it has 
been proved in Refs. [6,7] that the following N x (N — I) codes G(z) are AR 
over C 

G(z) 

1 0 0     • •     0 0 

f 1 0     • •     0 0 

0 f 1 •     0 0 

0 0 0     • •   f 1 

0 0 0     • ■     0 f 

(1.3) 

Nx(N-l) 

for any positive integer r. In Ref. [8], the following N x (N - I) polynomial 
matrices 

0 
0 

0 
G(z) = 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

FAz) Fi{z) TO 

1 
FN-\{z) 

(1.4) 

Nx(N-\) 
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have been studied. The following necessary and sufficient condition for G(z) in 
Eq. (1.4) to be AR is given in Ref. [8]: 

{l,Fl(z),F2(z),...,FN_l(z)} 

is linearly independent over C, which can be also seen in Theorem 4 in this 
paper for a general infinite field F. The codes G(z) in Eq. (1.4) are called sys- 
tematic codes, which is analogous to the conventional error control codes de- 
fined over a finite field [2] for the encoding convenience. 

In this paper, we systematically study AR matrices over F. We provide 
canonical forms for all TV x K AR matrices and characterize all TV x (TV - 1) 
AR matrices. The characterization is easy to use. Since, in coding applications, 
K samples are expanded to TV samples, when an TV x K code is used. This ex- 
pansion means that the bandwidth needs to be expanded in a transmission, 
which is usually expensive. Therefore, the smallest sample expansion in coding 
is usually desired. Clearly, the codes of size TV x (TV - 1) provide the smallest 
bandwidth expansions, and therefore are the most interesting codes in appli- 
cations. The characterization of all TV x (TV- 1) AR matrices provides the 
opportunity to search the optimal one in resisting other distortions, such as the 
additive random noise as mentioned before. Some results have been obtained 
in Refs. [8,9] along this direction. 

This paper is organized as follows. In Section 2 we present the canonical 
forms for TV x K AR matrices. In Section 3, we provide the necessary and 
sufficient conditions for a polynomial matrix of size TV x (TV - 1) to be AR in 
terms of its systematic or canonical form. 

2. Classification of AR matrices and canonical form 

Let F[z] denote the polynomial ring over an infinite field F. Let MNxK(¥[z}) 
denote the set of all TV x K matrices with elements in F[z]. 

Definition 3. The transformation 7>,e of MWxJC(F[z]) defined by 

TP,Q(A) = PAQ   for all A € MlVxjr(F[z]), O 

where P and Q are TV x TV and K x K unimodular polynomial matrices (i.e., 
their determinants are non-zero constants), is called an equivalence transfor- 
mation of MNxK(F[z}). 

It  is  well  known  that  the  set  of all  equivalence  transformations of.    ,^ 
MivxJc(F[z]) is a group of transformations with TIUJK the identity transforma- 
tion, and with the formulas TP,QTRS = 7>Ri5ß and Tp~Q = 7>_i,g_i. This group 
induces an equivalence relation on MNxK(F[z\) and two matrices A and B are 
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said to be equivalent over F if there exists an equivalence transformation 7>,ß 

such that TPß{Ä) = B. Since polynomial ring F[z] is a principal ideal ring, we 
know that every matrix A e MJV><A:(F[z])is equivalent to a diagonal matrix D(z), 
which is known as the Smith form decomposition [4,5]. This general theory 
applies to AR matrices, but the equivalence relation defined above does not 
preserve the AR property. To do so, we define AR-equivalence transforma- 
tions as follows. 

Definition 4. An equivalence transformation 7>>ß is called an AR-equivalence 
transformation if and only if P is a non-singular constant matrix and Q is a 
unimodular polynomial matrix. 

From now on, in order to avoid confusion, A will represent a constant 
matrix and A{z) will represent a polynomial matrix unless otherwise specified. 
We have the following result. 

Theorem 1. An AR-equivalence transformation preserves the AR property, i.e., 
anN x K polynomial matrix G{z) is ambiguity resistant if and only ifPG{z)Q{z) 
is ambiguity resistant for any N x N invertible constant matrix P and any 
unimodular polynomial matrix Q(z). 

Proof. Let EiPG(z)Q(z) = PG(z)Q{z)Vx{z). Then P~xExPG{z) = G{z)Q{z)Vx{z) 
Q'\z). Hence the ambiguity resistance of G{z) implies that Q{z)V\(z)Q '(z) 
= alt and P~XEXP = oJN, which implies Ex = cdN, Vi(z) = cdK for some non- 
zero constant a € F. On the other hand, if PG(z)Q(z) is AR, EG{z) = G(z)V{z) 
means PEP-x[PG(z)Q{z)} = [PG{z)Q(z))Q-\z)V{z)Q{z) which means PEP~X 

- o/jv and Q~](z)V(z)Q(z) = oJK for some non-zero a € F. Hence E = aIN, 
V{z) = oJK and G(z) is AR.     D 

We can easily check that AR -equivalence transformations form a subgroup 
of equivalence transformations. They also induce an equivalence relation 
among AR matrices. We call G\(z) and G2{z) AR-equivalent if there is an AR- 
equivalence transformation 7>,e such that TPQG\(Z) = G2(z). 

For an irreducible N x K polynomial matrix G(z), we can check that G(z) is 
equivalent to matrix [IK, 0]T (if N > K) where AT means the transpose of matrix 
A and 0 is the K x (N - K) matrix with 0 entries. We now want to seek a simple 
form of matrix G(z) under AR-equivalence, which is useful for AR charac- 
terization. The following proposition was given in Ref. [6], where result (a) is 
useful later as a necessary condition on AR matrices, and result (b) makes us 
only need to consider the case N > K. 

Proposition 1. If an N x K (N ^ K) polynomial matrix G(z) over F is AR, then 
(a) G(z) is not AR-equivalent to a matrix whose first column is (1,0,... ,0) ; 
(b) N > K. 
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Proof, (a) Suppose G(z) is AR-equivalent to a matrix with first column 
(1,0,..., 0)T, then by simple equivalence it follows that G{z) is AR-equivalent 
to a matrix of the form 

Gi(z) 
1      0 

.0   H{z) 

where H{z) is an (N - 1) x (K - 1) polynomial matrix. Setting 

2     0 

0   IN-i 
and    V{z) 

2     0 

0   4-i 

we see that EG{{z) - G\(z)V(z) and V{z) ^ cdK for any non-2ero constant 
a e F. In other words, G(z) is not AR. 

(b) UN = K, then the irreducibility of G{z) means G{z) is unimodular. So 
for any E, V(z) = G'\z)EG{z) satisfies £G(z) = G{z)V{z). So G(z) is not AR. 

D 

Lemma 2. yiny polynomial matrix A(z) € MATXA:(F[Z]) with rank = K is AR- 
equivalent to 

0 gn{z)       0 0 

g2\{z)      g22(z) 0 

g3l(z)      g32(z)      gx(z) 

gK\{z)     gKl{z)     gKi(z) 

.gNl(z)      gNl{z)      gNl{z) 

where deg(gu(z)) < deg{g22{z)) < 
deg(g„(z)) for any j < i. 

0 

0 

gKK{z) 

(2.1) 

gNK{z)_ 

■ <deg(gAx(z)). Furthermore, deg(g0(z)) < 

Proof.    Let    A{z)    be an N x K    matrix    with    entries    a,y(z).    Let 
dt{z) = GCD(a,i(z),... ,aiK(z)). By row permutation only we may assume that 
di{z) ^ 0 and deg dt is non-decreasing with / for / = 1,...,K. Now A(z) is AR- 
equivalent to (by only column transforms) 

dx{z) 

b2x{z) 

0 

b22(z) 

bN\{z)    bN2(z) 

0 

bm(z)_ 

Furthermore, deg[GCD(Afl(z),..., biK(z))} > deg[GCD(Z>,, (z),...,biK{z))\ 
^ deg dt > deg d\ (z) for;' = 2,..., N. Similarly we can deal with the submatrix 
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'b22(z)    ...    biK{z) 

B{z) = 

bN2{z)    ...    bNK{z)_ 

with rank(B) = K - 1. By induction the lemma is proved.     D 

Remark 2. Form (2.1) has a direct relationship with row-Hermite forms and the 
above lemma can also be proved by using Theorem 6.3-2 in Ref. [3]. From Ref. 
[3] the row-Hermite form of a matrix A(z) is equal to A{z)Q{z) where Q[z) is a 
unimodular K x K matrix. By row permutations, it is guaranteed that the 
diagonal elements g}J{z) are non-zero and deggit^deggn if l^i^j^K. 
Using column operations again the polynomial matrix can be reduced to the 
form in Lemma 2. 

Lemma 3. For L polynomials f{z) ^ 0,/2(z),... JL(Z) over F, if deg(GCD 
(c/i +/2,/3, • • • JL)) > deg/,   for   any   constant   c G F,   then   f \f2, f [f3, 

...,m. 
Proof. We first prove the case L = 3. It is obvious if f\ is a constant. Now 
suppose deg/i ^ 1 and dc{z) = GCD(cf +fi,h). Then degrfc^l- Let 
d = GCD{fuh,h). Then f = dguf2 = dg2,ß = dgi and GCD{gugi,gi) 
= 1, deg(GCD(cg, +g2,gi))>degg\. But based on the fact that if 
GCD(g\,g2,gi)= 1 over an infinite field F then there exists c G F such that 
GCD(cgi +gi,gi)= 1. Hence the above two cases mean GCD(cg\ + g2,gi) 
= 1. Therefore we have GCD{cf +f2,fi) = dx GCD(cgi +g2,gi) = d. Now 
degJSs deg/i and d\f\ imply d{z) = cf\(z) for some non-zero constant c. 
Hence f\\fi, f\\fi- For general L we know deg(GCD(c/i+/2,/),...,/i)) 
= deg(GCD(c/i +f2,GCD{f3,...JL))). By the above proof, fi\f2,A\GCD 
C/i,... ,/i). Hence /, [/i,/, |/3,... ,/i l/i-     □ 

Lemma 4. //C(z) = (g</(z)) is a non-zero matrix in M^xA:(F[z]) of the form (2.1) 
W //£n(z) / 0 is an element of G(z) with m = degfei i) < deg(gy) for any 
g,j{z), then either g\\{z) divides allgy(z), or else there exists an AR-equivalence 
transform T such that T{G(z)) - H(z) has the form (2.1) and hn(z) # 0 is of 
degree less than m. 

Proof. Suppose g\\{z) does not divide every element of G(z). By Lemma 3, 
there  exists  a  constant  cGF  and  i,2^i^N  such  that  deg(GCD(cgu 
+g,\,ga ,ga,..giK) < deggn = m. This means that G{z) is AR-equivalent 
to a matrix with /-row {cgu + ga,ga.- ■ ■ ,£,;,-•• ,£■*)• Now Lemma 2 guaran- 
tees that G(z) is AR-equivalent to H(z) of form (2.1) with deg An <deg(GCD 
(cgu +g,i,ga,...,gii giK) <m.     D 

m 
■:■?. 

H 

. -Ü 
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Combining Lemmas 2 and 4 we can obtain the following result. 

Theorem 2. Any non-zero matrix A(z) eMNxK(F[z\) with rank = k is AR- 
equivalent to a matrix of the following form 

-gu{z)       0 0       ...       0        0     ...     01 

g2i{z)    gn{z)        0 

gk\{z)    gki{z)    gks(z) 

0 0 

8*{z)     0 

0 

0 

.gm(z)   gmiz)   gm{z)    •••   &»(*)     0     ...     0. 

with gii\g(i+i)(i+i),gii\gß for any / = 1,2, ...,k- 1 and j ^ i 

Proof. Obviously, A(z) is AR-equivalent to a matrix of form [B 0] where B is an 
N x k matrix with rank(5) = k. By Lemma 2, we have that any non-zero matrix 
is AR-equivalent to a matrix as above such that g\\{z) has the minimum 
degree. If gu{z) divides all gk,(z) for any k, I ^ /', Theorem 2 is proved. If gu(z) 
does not divide some gk!(z) for some k, I > /, we then consider the submatrix 

"  gu{z) 0 0 ...       0    1 

g«+i)i(z)   g(,-+i)(/+i)(r) 0 ...       0 

gki(z) gk(i+l)(z) g«i+2)(z)      ...      gkk{z) 

.   gm(z) gN(i+\)(z)        gN(i+2){z)      ...      gNk{z). 

Therefore, by Lemma 4, under AR-equivalence we have that ga(z) divides all 
gu{z) for any k, I S* i.     D 

By the above theorem, for irreducible matrices, we have the following result. 

Theorem 3. Any irreducible matrix in MNxK(F[z}) is AR-equivalent to a matrix of 
the following form 

1           0 0 0              0 
0           1 0 0              0 

0           0 0 1              0 
gK\(z)      gK2(z) gKi{z)    .. gK(K-[)(z)      gKK{z) 

gNl(z)     gN2{z) gffi(z)      ■■ gN(K-l)(z)      gNK(z) 

(2.2) 
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with GCD(gKK,g{K+1)K,...,gNK) = l,   deg giK < deg gjK   for   K^i<j^N. 
Furthermore,   gu{z)   can   be   either   0   or   a   non-constant polynomial   (i.e., 
deggkl> I) for K^k^N and l^l^K- 1, and gm{z) = ■■■ = g^^z) = 0, 

®     1 ^deggM <deggA,(i+1) < ••• < fag gm for some L where \^L<K. 

Proof. By Theorem 2, if gu(z) is not a non-zero constant for 1 < / < K — 1, then 
gß(z) = gu(z)hji(z) for / <j^N. For example, assume /= 1. Then 

G(z) = 

1 0 0 

h2i(z) g12{z)        0 

hK\{z) gK2(z) gn(z) 

hm(z) gN2(z) gN3(z) 

0 

0 

SKK(Z) 

SNK{Z). 

SIIOO      0 
0       /*_, 

which contradicts with the irreducibility of G(z) because the leftmost matrix is 
not unimodular. Similar arguments can be used to prove that 
GCD(g£K,#(£+,)£, • • • ,gm) = 1. When gkl(z) is a non-zero constant for some 
A:,/ with K^k^N and 1 < / <K - 1, it can be reduced to zero by implementing 
a constant elementary row operation, i.e., gu(z) can be reduced to zero by an 
AR-equivalence transformation.     D 

"lAs®, 

Wi: 

IÄI5S! 
pfi 

Remark 3. The result in Theorem 3 is the simplest form we can have, which 
cannot be improved further. For example, we can directly check that 

1 0    " 

z z2 

z2 Z> + 1 
»   T-.'.J 

is an irreducible matrix, we cannot simplify it further under AR-equivalence 
transformations. This polynomial matrix is actually an AR matrix from The- 
orem 5 of the next section. 

Definition 5. If A(z) is AR-equivalent to G(z) of the form (2.2), then G(z) is 
called the canonical form of A(z). If gKK = 1, as indicated in Section 1, we call 
G(z) the systematic form of A(z). 

By the above results, we can easily classify irreducible matrices as well as AR 
matrices. So, to study the AR property of a polynomial matrix, we only need to 
study its canonical form or systematic form. 

<V>-.r,v>.. * s"   * : 

Wm 

mm 
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3.(K + l)xK AR-matrices 

In the above sections we have discussed the classification of AR matrices 
and it was shown that every N x K AR matrix is of form (2.2). In this section, 
we present the sufficient and necessary conditions for a (K + 1) x K matrix to 
be AR. These conditions can be used in the design of error control codes in 
applications. 

We first see the simplest form, i.e., the systematic form as follows (also see 
Ref. [8]). 

Theorem 4. IfG(z) has systematic form, i.e., 

G(z) 

0 

1 

0 

0 
0 
1 

0 0 0 

.S(X+l)l(z)     g(K+l)2(z)     g(K+l)l(z) 

0 
0 
0 

g{K+i)ic(z). {K+\)xK 

then G{z) is AR if and only if {l,g(K+i)i(z),g(K+\)2(z),g(K+\)3{z),- ■■ >£(K+I)A:(Z)} 

are linearly independent over F. 

Proof. Let N = K+\. We first prove the necessity. If 
{l,gm(z),gN2(z),gN3(z),---,gmdz)} are linearly dependent, then there exists 
ke {\,...,K} such that 

gNK {z)=c+  Y^, ciSsi{z). 
1=1.1^* 

Hence, there exists an AR-equivalence transform that transforms G(z) into a 
matrix with its first column as (1,0,...,0)T. Proposition 1 means G{z) is not 
AR. Thus 

{gN\{z),gNl(z),gN-i{z), ■ ■ ■ ,gNK{z)} 

are linearly independent. 
We now prove the sufficiency. Under AR-equivalence, we may assume 

1 ^ deg gNi < deg gN2 < ■ ■■ < deg gNK. By 
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en 

em ■ ■    ew _ 

1 
0 

1 
0 

0 
1 

0 0 
-gm{z)   gNi{z) 

0 o 
■gm{z)   gNi{z) 

0 
0 

1 

0 
0 

•      gNK(z). 

vn(z)    . 

V
KK{Z)_ 

we obtain 

eij + eiNgNj{z) = Vij{z)    for ij = 1,2,..., K, 

K 

eNJ + eNNgNj{z) = Yjkj&gnkiz)    forj=l,2,...,K. 
k=l 

First, from Eq. (3.1) and Eq. (3.2) we obtain 

eNj + eNNgNj{z) = J2(ekj + ^^(z))gM(z) + (eKJ + e^g^z^g^z) 
k=\ 

Taking j — K we have 

(3.1) 

(3.2) 

AT—1 

eNK + eNNgNK{z) = J2(ekK + ekNgNK{z))gNk{z) + (eKK + eKNgNK{z))gm{z). 
k=\ 

Comparing the highest coefficients of the two polynomials we have e^ = eNN 

and eks = 0 for any * = 1,..., K. Hence ViJ(z) = eu is in fact a constant for any 
i,j=l,...,K. Since Udeg(gM) < degfe,V2) < deg(gNK), l,gfn,... ,gNK are 
linearly independent. By Eq. (3.2) again we have 

K 

es, + eNNgNJ{z) = Y^VkjgNk(r)    for j = 1,2,..., K. 
k=\ 

Hence v„ = etJ = 0 except possibly VjJ = en = em for j = 1,2,... ,K. This is 
exactly what we need.     D 

We now consider the general canonical form (2.2) G(z) with N = K+l.We 
have the following necessary and sufficient conditions for all possible 
(AT+ 1) x AT AR matrices. 
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Theorem 5. Let G(z) have the cononical form (2.2) with N—K + 1. 
(a) If 1 ^ deg gm < deg gN1 < ■■ ■ < deg gNK, then G(z) is AR if and only if 

GCD{gKK,gNK) = 1. /" this case, irreducibility and ambiguity resistance are the 

same. 
(b) Ifgm (z) = • ■ • = gN(L-i) (z) = 0,1 «S deg gNL < ■ ■ ■ < deg gNK, then G(z) is 

AR if and only ifGCD{gKK,gm) = 1> H,gic\,gic2, ■ ■ -,gK(L-i),gNL, • • -,gs{K-i)}. 
are linearly independent over F, and W\ n W2 = {0}, where 

W\ — SV®&{gNK-,gNKgK\,- ■ -,gNKgK(K-l)}, 

W2 = Spa.n{gKK,gKKgKl, ■ ■ ■ ,gKKgfC(L-l),gfCKgNL, ■ ■ ■ , g/CKgN(K-l)}, 

where span means the set of all linear combinations with constant coefficients. 

Proof, (a) This is a special case of (b): the case of L = 1. If GCD{gNK,gKK) = 1 

and      KdeggM <-"<deggMr,      we      can      easily      check      that 

Spm{gNK,gNKgKU- ■ -,gNKgK(K-l)} H Span{gKK,glXgNU- • -,S*KÄW(Jir-l)} = {°}- 
So we only need to prove (b). 

(b) EG{z) = G{z) V(z) we get the following equations: 

eij + eucgKJ(z) + emgNj{z) = Vij(z),    l^i,j^K-l, (3.3) 

K 

eKj + eKKgKj(z) + eKNgNj{z) = XA™(Z
)M

Z
)»     1 < 7 ^ * - 1. (3-4) 

m=l 

«ty + eNKgKj{z) + emgNj(z) = ^gNm{z)vmj{z),     l^j^K-l, (3.5) 
m=l 

e/Kto: (z) + «wftwr (*) = »«(z),     1 ^ i < A" - 1, (3-6) 

eKKgKxiz) + enigma) = X^A&»(z)tw(z), (3.7) 
m=l 

A: 

eNKgKt:(z) + emgNKiz) = ~Y^gNm(z)vmK(z). (3.8) 

Substituting Eq. (3.6) to Eq. (3.8) we obtain 

K-\ 

eNKgKic{z) + em gNK (~) = Y^Ssm(z)(emKgKK(z) + e<nNgm(z)) + vKK(z)gNK(z) 
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i.e., 

em ~ VKK(Z) ~ Y2e^gNm(z) ]gm{z) = ( 5jW&vm(z) - eNK jto(z). -eNK h 
m=\ lm=l 

. So GCD{gm,gKK) = 1 implies 

gNK(z) 
'K-l 

22emKgNm{z) - eNK 

im=I 

Hence    1 ^ deg gNL < ■ ■ ■ < deg gNK    implies    eNK = 0    and    eiK = 0    for 
i = L,...,K-l and 

AT-l 

"Bf (z) -em- '^JmNgNm(z). 
m=\ 

Plugging Eqs. (3.6) and (3.9) into Eq. (3.7) we get 

I ejw - ^2emNgKm{z) jgw(z) 

=. I em - etcK + ^(^„KgKm - emNgNm{z)) ]ta(z), 

(3.9) 

or 

e>cN - 'YjmNgKm{z) \gNK{z) 
\       *=1 / 

= ( em - eKK + ^2emKgKm - ^2emNgNm(z) 1 g^(z). (3.10) 

Now Wx n W2 = {0} and the linear independence of 
{LgK\,---,giati-\),gNL,---,gw-\)} mean eKK = em, eiK = 0 for 
/ = 1,..., L - 1, e„N = 0 for m = I,..., AT - 1. So 

£-1 
e™ - X/mA'£A:m(z) =eKN ~ ~%2emNgKm(z) = 0 

m=1 m=! 

implies e^ — 0, emJV = 0 for m = 1,..., L - 1 by the linear independence of 
{l.gKi, •••.£*(£-!)}• Hence we obtain eiN = 0 for i - 1,2,... ,K, e^ = 0, 
e^ = eiW, elA: = 0 for /' = 1,2,..., K - 1. Then Eq. (3.3) becomes 

vij(z) = eij,    i,j=l,2,...,K-l, (3.11) 

p*"**«a**--***«fc 

M 

■'4 

S4Ä« 
lie,./©?, 

^Ü 

'■,': 

US 
«*; 
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Eq. (3.4) becomes 

K 

eKj + eKKgKj{z) = Y^SKm{z)vmj(z),    l^j^K-l, (3.12)   , 
m=l 

Eq. (3.5) becomes 

K K 

eNj + eNNgNj{z) = Y^gNm{z)vmj(z) = YjNm(z)vmJ(z), 
m=I m=L 

u;a-i. (313) 

Plugging Eq. (3.11) into Eq. (3.13) we get em = en = vn, vtJ(z) = e,y = 0 for 
i = L,...,K, j=l,2,...,K-l, i^j.ln this case Eq. (3.12) becomes 

£-1 

eKj + exKgKjiz) = ^2gKm(z)emj + YßKm(z)emJ. 
7i= 1 m=L 

This means that ey = 0 if /= l,...,L - 1, j= 1,2, ...,K - 1, i^j. This 
proves that E - enIK+\, V(z) = enIK. 

We now prove the necessity. If G{z) is AR, it is obvious that we require 
GCD(gMT,to) = 1 and {l,&n,...,£*(i-i)} are linearly independent. Now if 
Wx n W2 ■£ {0}, Eq. (3.10) implies that we can find non-trivial solution, i.e., 
there exists elK ^ 0 for some 1 < /<L - 1. Hence we conclude that V(z) ^ cdK. 
This contradicts with the AR property of G(z).     D 

Remark 4. In Theorem 5, if gx*(z) = 1 and gKJ[z) = 0 for l^j^K- 1, it is 
exactly Theorem 4. 

By Theorem 5, we can also see that if the field F is the complex field C, and 
the degree of the polynomial matrix of size (K + 1) x K to be bounded by some 
integer M, then the set of (K + 1) x K polynomial matrices that are not AR has 
measure 0 in the finite dimensional linear space consisting of all (K + 1) x K 
polynomial matrices whose degrees are bounded by M. This means that a 
randomly generated polynomial matrix is AR with probability 1. Hence we 
have the following result which confirms the conjecture made in Ref. [10]. 

Corollary 1. A randomly generated (K + 1) x K polynomial matrix over the 
complex field C is almost surely AR. 

The following corollary gives an intuitive construction of a family of AR 
matrices. 
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Corollary   2.   If gm (z) = • • • = gN(L-i)(z) = °> l < degSNL < • • • < deg gNK, 
GCD(gKK,gNK) = 1, {l,gK\,gK2,---,gK(L-\),gNL,---,gN{K-i)} are linearly in- 
dependent over F and if deg gNK > deggKjfor 1 <y'<Z, - 1, then G{z) is AR. 

Proof. Let 

W\ = Span {gm, gwgK i, . . . , gNKgK(K-1)}, 

fF2 = SpanfgKJcto&n, ■ • -,gKKgK(L-\),gKKgNL, ■ ■ -,gKKgN(K-\)}- 

@    We only need to prove ^ fl ^ = {0}. Now let 

K-l 1-1 K-l 
^XjgNKgKj = ^ßjgKKgKj + ^ßjgKKgNj 
j=\ j=\ j=L 

i.e., 

O 
gNK 

<dM 

(K-\ \ /' L-\ K-\ > 

By GCD(gAx,g^) = 1 we get 

/£-! tf-1 \ 

to (Eto+Dw- 
So deg gNK > deg g^ and deg gNL < ■ ■ ■ < deg g^ induce 

y=i ;=£ 

and hence JF, D JF2 = {0}.     D 

It is natural to ask the following question: if G{z) of size N x K (N > K) is 
AR, H(z) is an Af x K polynomial matrix, is polynomial matrix 

G{z) 

H(z) 

AR? The following example provides a negative answer to this question. 

Example 1. Let 

G(z) 

"1 0" 

0 1 

z z2 

By Theorem 4 we see that G(z) is AR. Let 

§mmmm% 
i«C-Ä 

mm^w* 
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i   o- 
0     1 

z    z2 

0    z. 

We can easily check that 

G(z) 

10-10 

110 1 

0 0 10 

0   0     11 

ri   oi ri   on 
0    1 0    1 " 

z    z2 z    z2 

Lo   z. .0      2. 

1-z 

1 

-z2 

1+z 

Hence G(z) is not AR. 
However, we have the following property [6]. 

Proposition 2. If an M x K polynomial matrix A{z) is AR-equivalent to 

-G(zY 

0 

and G(z) is AR, then A(z) is AR. 

Proof. 'We only need to prove that if G{z) is AR of size N xK, then 

■G(z) 

0 

is AR. By equation 

En    En 

En    E22 J 

G(z) 

0 

G(z) 

0 
F(z) 

we get EnG(z) = G(z)V(z), so G(z) is AR concludes V(z) = oJK for some 
nonzero constant a.     D 

In Section 3 we completely characterized (K + 1) x K AR matrix. However, 
the sufficient conditions for general N x K polynomial matrices to be AR are 
not yet clear. Another interesting question is, if G(z) is an N x K (N > K + 1) 
AR matrix, can we always find an ambiguity resistant {K + 1) x K submatrix 
H(z) among the AR-equivalence class of G(z)? 

Finally, as pointed out by one of the referees, some of the results in this 
paper also apply to finite fields. For instance, let us consider Lemma 3. Since 
the degrees of / for l^i^L are bounded, using a simple non-topological 
counting argument, Lemma 3 is also true for a sufficiently large finite field. 
Since Lemma 3 plays a main role in the proof of Theorems 2 and 3, we believe 
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that if the degrees of polynomial matrices are bounded and the matrix size is 
fixed, Theorems 2 and 3 is also true for a sufficiently large finite field. Never- 
theless, we think that the results in Theorems 2-5 may not hold for general 
finite fields when there is no restriction on polynomial matrices. 
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which   compeltes   the   derivation   with   T*L.._.)     =     .V.■_■';/   - 
Z,   L , L ,D[\\ [n +   <;!P,.i|,i. 

Equation (I4i indicates that the error made in approximating the 
22 block in L is proportional to A' /,_■_• i: however. T is a function 
of Lj. through ■ > and the I -norms of /*...■ and / - L,.. Lj", L .D '. 
To partially examine the behavior of T. we argue that decreasing 
A I/.j in a natural manner decreases this quantity as well Assume 
that 0 is fixed and that -2v is decreased bv decresing the value of 
the K parameter in the prior model, specifically for the coefficients 

in the 22 block. Now. it is not hard to show that D~' "— 0 so that 
with D = L   LL.: 

\\l-BD- 'II, = \\I-BD~ 

<I|/--D"'l 

<||/-D"'| 

+ iizr'||, 

+ D- 

■ +P>~' -BD-'lh 

|/-B||, — ||/||, =1. 

Hence, asvmptotically. ||/ - BD~X\\\ is independent of L::. Re- 
ferring to (8b). it is not difficult to show that as K decreases, 
P.. — «-'P., ..... where Po .>j is the 22 block of the appropriately 
permuted form of Pu. Therefore, as n — 0, both o and ||P....||i go 
to 0 Thus, we conclude that decresing Ji( L>->) by varying the degree 
of resulanzation will cause T — 0. 
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Efficient Implementation of Arbitrary-Length 
Cosine-Modulated Filter Bank 

Xiqt Gao. Zhenya He. and Xiang-Gen Xia 

Abstract— The fast implementation of arbitrary-length cosine- 
modulated filter bank is investigated. By using the linear phase property 
of the prototype filter, a more efficient implementation structure is 
obtained for the filter bank. In the new implementation. 2x2 lossless 
lattices are used instead of 2 x I ones in the traditional implementation 
with the number reduced by half. 

I. INTRODUCTION 

The cosine-modulated filter bank (CMFB) has received much inter- 
est in recent years [l]-{6]. It has two remarkable features: easy design 
and fast implementation. While the design of CMFB's has been 
addressed by many researchers, we deal with the implementation of 
paraunitary CMFB's in this correspondence. Typically, the polyphase 
component matrix of a paraunitary CMFB can be expressed as the 
product of a modulation part and a polyphase part in terms of the 
polyphase components of the prototype filter. Based on such an 
expression, the CMFB can be implemented through two-channel 
lossless lattices and fast discrete cosine/sine transform (DCT/DST) 
algorithms (see. for example. [I] and [4]). Two-channel lattices are 
often used for an .U-channel CMFB. Notice that only half the number 
of the lattices are required in the implementation of Malvar's CMFB. 
which is called extended lapped transform (ELT) |2]. The motivation 
of this correspondence is to generalize the above Malvar's result to 
other paraunitary CMFB's. The arbitrary-length CMFB developed by 
Nguyen and Koilpillai in [3] is considered in this correspondence. 

This correspondence is organized as follows. In Section II, we first 
review the arbitrary-length CMFB briefly. Then, we show that the 
four filters in two related pairs of power complementary polyphase 
components of the prototype filter form a 2 x 2 paraunitary system 
due to the prototype filter symmetry. In Section III. a new expression 
of the polyphase component matrix of the CMFB is developed. Based 
on it. a more efficient implementation structure is obtained by using 
the 2 x 2 lossless lattices instead of the 2 x 1 ones in the traditional 
implementation. The implementation complexity of the CMFB is 
discussed in Section IV. 

Sotations: Capital and lower case letters are used to denote the 
transfer functions and the impulse responses of fillers, respectively. 
Bold letters indicate vectors and matrices. The functions fr] and 
[T\ round the value of i to the nearest integers toward infinity and 
minus infinity, respectively. C'v1 and C'v stand for the standard 
DCT matrices as defined in [8], 0 stands for matrix whose entries 
are all zeros. /.\ and J.v are the .Y x .Y identity and reverse identity 
matrices, respectively. 

Manuscript received August 7. 1997; revised August 15. 1998. This work 
was supported in pan by Natural Science Foundation of China. The associate 
editor coordinating the review of this paper and approving it for publication 
was Dr. Sergios Theodoridis. 

X. Gao and Z. He are with the Department of Radio Engineering, Southeast 
University, Nanjing. China. 

X.-G. Xia is with the Department of Electrical Engineering, University of 
Delaware. Newark, DE 19716 USA. 

Publisher Item Identifier S 1053-587X(99)02163-7. 

I053-587X/99S10.00 © 1999 IEEE 



IEEE TRANSACTIONS ON SIGNAL PROCESSING. VOL  47. NO 4. APRIL I**» IIK4 

-H,(Z.. ,M h H fM -*IF. («r 

x(n' -H,.:. 
, ,    x,(m.    r- , 

-" .M  1 TM r IF..Z) 

H^l iM 
xM.,;m) 

-1 tM, HFK-^V 

x'n) 

Fie   I.    ,W-channel maximally decimated tiller bank. 

II. THE ARBITRARY-LENGTH CMFB 

A A Review of The Arbitrary-Length CMFB 

A typical .U-channel maximally decimated filter bank is shown 

in Fig. 1. «.here Hit:) and ftUMO < k- < M - 1) are the 
transfer functions of the analysis and synthesis filters, respectively. 

At the analysis side, the input signal r{n) is decomposed into M 

subband signals through the bank of analysis filters followed by M- 

fold decimators. At the synthesis side. M subband signals are passed 

through V-fold interpolators and recombined into the reconstructed 

signal > n • by using the bank of synthesis filters. 
Let h n ' denote the impulse response of a linear-phase low-pass 

prototype filter with length .V = 2m0.U + »M- where in0 and m, 
are mieger- and (I < m, < 2M - 1. The .\/-channe! arbitrary-length 

CMFB is denned as (3] 

/. = 2>it a i < 

:/i: 

 (:^(-if>-»'7) 

(lb) 

»here /•. - and /. r-).() < k < M - 1.0 < » < -V - 1. 
are the impulse responses of the Ath analysis and synthesis filters, 

respectively The CMFB is exactly the one investigated in [1] with 

the length extended to arbitrary integer value. 
Suppose that the impulse response of the lowpass prototype filter 

is symmetry: then. /»i » I is the time-reversed and shifted version 
of h.' a This relation means that the CMFB is paraunitary if and 
only if it has perfect reconstruction property [9]. Let Gk(:).k = 
(I. 1. ■ • . 2M - 1 denote the rype-1 polyphase components of the 
prototype filter [9] Due to the symmetry property of h(n). Gk(:) 

satisfies 

• _  ( :">C,n., -,-tU). A-<m,-l 
C»-:l- ^-.-'G^,.™,-,-*!:).    k > n>, 

(2) 

where G» i :> = G4 (:"')■ It has been shown in [3] that the necessary 
and sufficient condition on the polyphase components for perfect 

reconstruction is 

0 < A- < M - 1. (3) 

Gkl:)Gt(:) + Gu+k(r)GA/ 

- _L 
~ 2.U 

This means that appropriate pairs of the polyphase filters are power 

complementary. Depending on the lengths of the two filters G*(r) 

and Gu+kiz) and the relationship between them, four classes of 
power complementary pairs can be distinguished in the general case 

for arbitrary length prototype filters. The condition given by (3) can 
be satisfied by the four different modes, as discussed in [3]. In modes 
a and r. the two fillers have the same length. If they are related by (2). 
thev are under mode c; otherwise, they are under mode a. In mode c. 

both of the two filters must be delays. In mode >• and ■/. G\!:: and 
G i.i'ii have different lengths. If the> are related to themselves 

by (21. thev are under made <l: otherwise, thev are under mode '■. In 

mode 'I. one of the two filters must be a delay, and all coefficients 

of the other one must be zeros. 

B Laune Structure for a Power Complementary 

Pair and Its Related One 

The power complementary filter pair Gi < : i and G-i-it: sat- 
isfying (3) can be completely factored as the two-channel lossless 

lattice 

Gil;i 
V-2.U 

G.^t<:)_ 

= Ri..l„Mz)Ri:„l. A(--)---Äi,,A(:) 
a o 

•Ho 
(4) 

where 

Rid = 
Ck.l st-./ 

-a-./ 

a / = co-"» 

A(:) = 

= Mil t*k / = 0.1. 2. ••-.»/ 

and in depends on the lengths of the two filters. For the case 
.V = 2/7i.U, all the polyphase components have the same length, and 

there is no restriction on any angle parameter Bk.i- For the general 
case when the prototype filter has arbitrary length, there are different 
constraints on the angles of the lossless lattices corresponding to the 
four modes (see [31 for details). 

For each power complementary filter pair, we can find a related 
one due to the prototype filter symmetry of (2). The four filters in 
the two pairs define a 2 x 2 system. We define the following three 
types of 2 x 2 systems in terms of different w i and k: 

GtU) G.U + mi-|-/r( :) 

-:~ Gu^k(z)       Gmi-\-k(:) 

m, < .U.     k < nil - 1    or 

in i > M.    in i - M <k < M - 1 

Z,l2,(,)i v/237 
Gklz)        G\/+m,-i-*(:) 

G\l + k{:)       —G-i.U + mt -1-tU) 

m, < M.     m i < k < M - 1 

(5a) 

(5b) 

Gk(z)       Gm,_.\/_i-t(r) 

G\i+k(z)     —Gm,_i_t(c) 

m, >.\/.     A- < ffl, - M - 1. (5c) 

L'j.'' is for the polyphase filters under mode b and mode d. Lk
2) 

and L'k
3) are for the polyphase filters under mode a and mode c. It is 

easy to show that these systems are paraunitary and can be expressed 
as the following 2x2 lattices: 

0     l   flt.mo_,AU)---Ät.,A(:) 

o-->=< 

0--)=At, 

-1   0 

Rk.O 
0 

0     (-1 
A(-:)Ät,moA(.-)-fit;2A(;)Ät 

1 0 
0    (_l)lmo+ll 

l0-lAU)Ä*r..no-2-^:' 

Fi      o 

9k.m0  -   - (6a) 

ek.o = 0. 

■Rk.iM:)Rk.o 0   (-1)" 

43,(-)=A t.m0A(-)Äi.TO0-l-^(-) 

■ Rk.iMz)Rk.o 
0 

0   (-l)mo+1 

(6b) 

(6c) 
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In mode <■ and mode d. the corresponding lattices are trivial. 
In practice, a two-channel lossless lattice can be implemented by 

using the two-multiplier structure for each section [2|. [9|. A 2 x 1 
lossless lattice with m free angle parameters and others sei to be zero 
or TT/2 can be implemented by using 2m multipliers and 2i w - 11 
adders. For the corresponding 2x2 system, both the two numbers 

are 2m + 1. For Lt ' and Lk~'. there are tin, free angle parameters, 
and hence. 2m(, + 1 multipliers and 2m,-, + 1 adders are required. For 

Lk '. there are m0 4- 1 free angle parameters, and hence. 2/n,, + 3 
multipliers and 2m0 + 3 adders are required. 

rn. FAST IMPLEMENTATION OF THE ARBITRARY-LENGTH CMFB 

Now, we consider the implementation of the CMFB. Considering 
the relationship between the synthesis bank and the analysis bank of 
the paraunitary filter bank, we only deal with the latter. The polyphase 
component matrix of the analysis bank can be expressed as [3] 

Eiz) (7) 

where D is an M x M diagonal matrix with the Ath diagonal 
component >h  = <-li"-'-.and 

C = 

B = 

A„ = I 

Ai ={ 

= 

■ A'\\:.'"- 
[0       0 

.    /, =0 

'1 = 1 
[0    /.w_,, " 
0        0 In < M 

- 7°       0-    'o>.V /lo-.W     °. 
0     0 

lo < M 

0 
0 

I7M 
0 

-'0 .   10>M 

/, =0 

'. = 1 

Substituting (8) into (7), we obtain the following expression of 
1 -i- Eiz): 

where 
E(z) = DCG(z) (9) 

:C\ 1 — 2ros (^7^('-'^)—1) 
where 

g0<:i =diag(Go(:)    G,(--)     ••• 

S,i:. =diag<G../(.-)    Gu + il;) 

G.\i-i[z)).    and 

■••    G2.\r_i(;)). 

Based on (7) and the power complementary condition in (3) for 
perfect reconstruction, the filter bank can be implemented through 
a parallel bank of 2 x 1 lossless lattices cascaded by the modulation 
matm The number of the 2 x 1 lattices is equal to the number 
of subchannels M The modulation pan can be implemented by 
fast DCT algorithm. Such an implementation structure has been 
widely used in the CMFB's with .V = 2mA/ [1], [4], The linear- 
phase property of the prototype filter is not exploited to reduce the 
complexity. 

Let m, + M - 1 = 2/o -/1. where /0 is an integer, and /, 6 {0.1}. 
If U is equal to zero, one of m, and M is odd. and the other even. 
If /1 is equal to one. both m, and M are odd or even. By using the 
properties of cosine function, the modulation matrix can be expressed 
as 

>TSiDC\A\o - BA,    AA, + BA0) 

G(. ) = >/237[(AA0 - B\,),„(-::2 

+ :-l(A\{+B\o)gi(-z2 
(10) 

(8) 

Based on this new expression, the analysis bank can be imple- 
mented more efficiently. The implementation structure is shown in 
Fig. 2. The diagonal matrix D only changes the signs of the output 
subband signals. The matrix C is the type III DCT and type IV 
DCT for /1 to be zero and one. respectively. It can be shown that 
the M x M matrix Giz) can be implemented through a parallel 
bank of 2 x 2 lossless lattices that are related to L'k

n and some 
delays. To give the explicit formula of G(:) and see this clearly, 
eight cases can be distinguished in terms of /0. Ii and m 1, as shown 
in Table I. In Table I, we give the numbers of the 2 x 2 lattices used 
in the implementation of G(z) for the eight different cases. Here, we 
consider Case 2 as an example. In this case, 1 < m, < A/ - 1. G(:) 
takes the form of (11), shown at the bottom of the page, where G* 
stands for y/2JlGk(-z2). G(z) can be implemented in parallel 
through the following: 

i)     a   delay   2V
/
A7G,0(-:

2
)   and   another   possible   delay 

N/HTIG,,,,,.,,/^-.-
2
) + r-'GA,+(mi_1)/2(-_-2)]  when 

M is even; 

GO : v2A/ 
0 
0 

0 
0 

-'G.u 
0 
0 

Go 
0 

0 
0 

0   0 
0   0 

0 
0 
0 

0 
0 

0   0 
0   0 

0 
0 

0 
0 

Gm,-1 
0 
0 

i~   G.U + m,- 

0 

0 
0 

0 
0 

0 
Gm, 

0 
0 
0 
0 

G\f + n 

0 
0 

0 
0 

0 
0 
0 
0 
0 
0 

00 
Gi0-l 

0 
070 
0 
0 
0 
0 
0 

V2G,0 

0 

0 
0 
0 
0 
0 
0 
0 

0 0 
G.v/+/0-i        0 

0 

Gl0+1 

0 
0 
0 
0 
0 
0 
0 

0 

GM+I0+I 

0 
0 

GM -1 

0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
G2.M-1 

0 
0 

(11) 
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x(n) 

um 

Hjä—' #o 

-^3—' 

•'U^— 

#1 

G(z) 

#0 

#1 

#M-1 #M- 

#0 

m 

H#M-1 

x0(m) 

x,(m) 

xM.,(m) 

(a) 

*n) 
G(z) x0(m) 

f K AT . ,„n,i TMFR (a) For eeneral case with arbitrary length, (b) For special case with .V = 2mA/. which 
F'g : CNr, Ä"rZT^l t ,^SdCin1!anaei £jh a ban, of 2 x 2 .ossjess Un.ces * ^inon to.rne <"ays. C >s the standard 
^^,lu^^D.s a d.agon/matnx and onh affects the sip» of the outputs. In <b, « » ^ to s/T37. 

m,_t_k(—:   ] 

(12) 

ii)    a set of 2 x 2 parauinary systems 

r-r-7\        Gt(-:2) G.\/*m; 

= .\i:!t'/'(-:'2) 

where "i, < Ar < (A/ + n»! - 3)/2; 
i,i)   another set of 2 * 2 parauintary systems [see (13) at the bottom 

of the page); 
where 0 < k < [m ,/2J - 1. Two types of the 2 x 2 paraunitary 
svstems defined in Section n are used in the parallel implementation. 
The total numbers of the 2 x 2 paraunitary systems are (SI - m, - 
l)/2 and [m,/2J. respectively. 

rv. IMPLEMENTATION COMPLEXITY 

In the previous section, we have shown that the CMFB can be 
implemented through a parallel bank of 2x2 lossless tamces 
and some delays followed by the standard DCT. For the DCT s. 
fast algorithms are available [7], [8]. All the lattices are related to 

£,"'. / = 1.2.3 without additional multipliers and adders required for 
the implementation. From Table I. it is obvious that the total number 
is less than or equal to SI/2 for each case. The implementation cost 
of the CMFB is that of about A//2 2x2 lattices plus one .\/-point 
DCT matrix working at an .W-fold decimated rate. 

In the traditional implementation structure of an .\/-channel 
CMFB. the number of the 2 x 1 lattices is SI. Ignoring the trivial 
lattices, which are under mode c and mode d, the number is exactly 
twice as that in the new implementation structure. Since only one 
additional multiplier and three additional adders are required to 
implement the corresponding 2x2 lattice of a 2 x 1 one, the 
complexity of implementing a set of 2 x 2 lattices is lower than 
that of doubled 2 x 1 ones. When the section numbers are large, 
the complexities of the two type lattices are approached, and hence, 
the cost can be saved nearly one half to implement a set of 2 x 2 
lattices instead of doubled 2 x 1 lattices. 

As an example, we consider Case 5, with SI = 2m to see 
the efficiency of the new implementation structure. In this case. 

Lk(z) = flSl 
'CM+»I-:

J
) 

Gk(--2) 
Gm,-l-*(—-    ) 0 .- 

1 0 Z       G.U + nn-l-tf— -    ) 

'A(_;)fit..mo-1A(-:2)ßl,..„-,A(-:2)---ÄtIA(-:2)R,.o 

r°    -l}Rkma\{—.'1)Ri^0->M-z2)---Ri,2M--2)Rk 
10 

L">(---2)AU) 

:-1 0 
o   (-lr0"1 

i        o 
0    (-l)mo+l;-1 

"Jfc.mo — 

0t.o = O. 
(13) 
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TABLE  I 
NlMBFRSOr  L ATTIC FS IS TH!   Vw   IMPLEMENTATION  STRICH. RF 

Cas« Number of lattices 

L." L; t.' 

1).   i,=0. /,-, < AC and   m, = 0 0 L U ' :J 0 

2).  / =0. /n < A/ and   m, * 0 ."•=J _< A/ - m, I • 2_ 0 

3).  /. =0. 'o = •« j I/-II/:J 0 0 

4).  / =0. 'o > -1' U- m;'2J 0 ,.<">! - .*/- IP'2 

5).   /,=!. /,, < M and   m, = 0 0 |v/:j 0 

6).   /, =1. /0 < A/ and  m, * 0 .""■2J JAY-m,)^ 0 

7).  /, =1. 'o = M [<A/-l)/2j 0 0 

8).   /,=!. 10>M A/-|_m,/2j 0 L«"i - Af-l)/2_ 

*■*- 
»                  1 

20 -t- 

18 + 

16 + 
in 

514 + * 
* 

12 + * 
10 + * 

* • 

8 ; 
X 

■ 

0 5 10 
m0 

ibl 

Fir ' C.>mpuijiionjl complexity in case 5 with M = 1C ia> Number of 
multiplications per mpui sample, ibi Number of additions per input sample. 
Here + and • represent the complexities of the traditional and the new 
implemenution structures, respectively. 

mi is, equal to zero. A//2 lattices L'/'|:). and type IV DCT axe 
used B) using the fast algorithm presented in [8], (A//2)log_, M + 
M multiplication«, and i3A//2) !i>°_, A/ additions are required to 
compute the M -point DCT-IV. The total cost of implementing the 
CMFB is Mill»., + 3 + log_, A/i/2 multiplications and M[2niu + 

1 + 3log, M 1/2 additions per M input samples. It is the same 
cost required b> Malvars ELT with the same length [2|. In the 
traditional implementation. A/i 4»/u + 2 + log_, A/I/2 multiplications 
and .\/(4.i»o -t- 31»>R_.A/)/2 additions are required for A/ input 
samples [I]. |9| In Fig. 3. we plot the average numbers of the 
multiplications and additions per input sample (MP1S and APIS) 
versus ;»o with M = IG. It can be seen that by using the new 
implementation structure, the saving of operations becomes more 
significant as mu increases. 

REFERENCES 

|1]  R. D. Koilpillai and P. P. Vaidyanathan. "Cosine-modulated FIR filler 
banks satisfying perfect reconstruction." IEEE Trans Signal Processing. 
vol. 40. pp.' 770-78?. Apr. 1992. 

[2]  H. S. Malvar. "Extended lapped transforms: properties, applications and 
fast algorithms." IEEE Trans Signal Processing, vol. 40. pp. 2703-2714. 
Nov. 1992. 

[3] T. Q. Nguyen and R. D. Koilpillai. "Theory and design of arbitrary- 
length cosine-modulated filter banks and wavelets, satisfying perfect 
reconstruction." IEEE Trans Signal Processing, vol. 44. pp. 473-486. 
Mar.  1996. 

[4]  R. A. Gopinath and C. S. Burrus. "Theory of modulated filter banks 
and modulated wavelet tight frames." Proc. IEEE ICASSP. Minneapolis. 
MN. 1993. vol. III. pp. 169-172. 

|5]  G. D. T. Schuller and M. J. Smith. "New framework for modulated 
perfect reconstruction filter banks." IEEE Trans Signal Processing, vol. 
44. pp. 1941-1954. Aug. 1996. 

|6]  H. Xu. W. S. Lu. and A. Antoniou. "Efficient iterative design method 
for cosine-modulated QMF banks." /£££ Trans Signal Processing, vol. 
44. pp. 1657-1667. June 1996. 

(7)  Z. D. Wang. "Fast Algorithms for the discrete H' transform and for 
the discrete Founer transform." /£££ Trans  Acousi. Speech. Signal 
Processing, vol. ASSP-32. pp. 803-817. Aug. 1984. 

|8) "On computing the discrete  Fourier and cosine transforms." 
/£££ Trans  Acousi. Speech. Signal Processing, vol. ASSP-33. pp. 
1341-1344. Oct. 1985. 

[9]  P. P. Vaidvanathan. Mulnraie S\siems and Filler Banks.    Englewood 
Cliffs. NJ:'Prentice-Hall. 1993. 

V.   CONCLUSION 

A more efficient implementation structure for a class of paraunitary 
CMFB with arbitrary length has been developed in this correspon- 
dence. The linear-phase property of the prototype filter is exploited 
to reduce the implementation cost. The new implementation structure 
uses 2x2 lossless lattices instead of 2 x 1 ones with the total number 
of lattices reduced by half. The implementation costs are significantly 
saved, especially for the CMFB with a large ratio of the length to 
the number of channels. 
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Abstract 

A quantitative analysis is given for the signal-to-noise ratio (SNR) in the short-time Fourier 
transform domain for multicomponent signals in additive white noise. It is shown that the SNR is 
increased on the order of 0(N/K) where K is the number of components of a signal, N/T is the 
sampling rate, and T is the window size. The SNR increase rate is optimal for given K. For this 
result, the SNR definition is generalized, which is suitable for signals not only in the time domain 
but also in other domains. This theory is illustrated by one numerical example. 

1    Introduction 

Time-frequency analysis [11-12] has become an important technique in analyzing wideband/nonstationary 

signals in various applications including inverse synthetic aperture radar (ISAR) imaging [1], biomedi- 

cal signal analysis [2-3], speech signal analysis [4], and FM radio communications [5]. One of the most 

important features of this technique is that it usually increases the signal-to-noise ratio (SNR) in the 

joint time-frequency (TF) domain. This is particularly advantageous for signals which are difficult to 

detect in the time or frequency domain alone. The reason for this important feature can be stated 

as follows. A joint TF transform usually spreads noise from one dimension (the time or frequency) 

into two dimensions (the joint time and frequency) while it usually concentrates a signal in localized 

regions in the TF plane. A number of research results on the estimation of time-varying frequencies 

have appeared, such as [5-7] with Wigner-Ville distributions. However, to the author's best knowledge, 

there does not exist a quantitative analysis for the SNR increase for any joint time-frequency transform, 

which is certainly an important issue in practical applications in signal detection by using thresholding. 

In the conventional SNR definition, the mean power is taken over the whole domain of a signal. If 

the signal is stationary in this domain, this definition works fine. However, if the signal is not stationary 

in this domain, such as a single tone signal in the frequency domain, this definition is no longer suitable. 

In this correspondence, we first generalize the SNR definition so that it is not only suitable for signals in 

the time domain but also in other domains, such as the frequency domain and the joint time-frequency 
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domain. We then present a quantitative analysis of the SNR increase rate in the joint time-frequency 

domain for the short-time Fourier transform with rectangular windows, where multicomponent signals 

in additive white noise are considered. The main result can be stated as follows. Let K be the number 

of monocomponents in a signal, T be the window size for the short-time Fourier transform, and N/T 

be the sampling rate. N point discrete Fourier transform is performed in each window. Then, the SNR 

in the joint time-frequency domain is increased on the order of 0(N/K), when the window size T is 

small enough. 
This correspondence is organized as follows. In Section 2, we formulate a proper definition for SNR 

in different domains. In Section 3, we present the proposed quantitative approach to analyze the SNR 

increase rate in the joint time-frequency domain. A numerical example is presented in Section 4 to 

illustrate the proposed approach. 

2    Signal-to-Noise Ratio in Different Domains 

The conventional signal-to-noise ratio (SNR) is defined as the ratio of the mean power of the signal over 

the mean power of the noise, where the mean is taken over the whole time domain. It is formulated as 

follows. Let y[n] be a distorted signal: 

y[n] = x[n]+ri[n], 0<n<N-l, (2.1) 

where x[n] is a signal and rj[n] is an additive white noise with variance a2. The SNR is defined as: 

SNR = E^-Q1 Ml2 (22) 

This SNR is used quite often in describing the noise level relative to the signal, and in distinguishing 

the signal from noise in stationary environments. When the SNR is too low, in general it is impossible 

to distinguish the signal x[n] from y[n]. However, for some special kinds of signals x[n], such as narrow 

band signals, it is possible to detect the signal in the Fourier transform domain even when the SNR is 

of negative dB. An example is shown in Fig. 1, where the SNR= -lldB and the signal x is a single 

tone signal. 
According to the SNR definition in (2.2), an orthogonal transform does not change the SNR, i.e., 

the SNR in the transform domain is exactly equal to the SNR in the time domain. This is because 

of the energy preservation property of orthogonal transforms. This implies that the SNR of the signal 

in the frequency domain in Fig. 1(b) is still -lldB. However, one can clearly see the signal in the 

frequency domain. This suggests that the SNR definition in (2.2) is not proper to judge the possibility 

of detecting the signal in the frequency domain in Fig. 1(b). It should not be surprising since the signal 

in Fig. 1(b) is not stationary and the mean power over the whole frequency domain is, of course, not 

proper to the signal with a single spike. 
The above observation suggests that the SNR definition is transform domain dependent and should 

relate to the bandwidth of a signal occupied in that domain. We now introduce the following SNR 

definition in a domain. 



Suppose the expression (2.1) is already in a transform domain, where n is the discrete variable in the 

transform domain. Assume the additive white noise r)[n] in (2.1) occupies the full band in the transform 

domain. For the signal x[n] of length N, 0 < n < N - 1, let 

B = {n: 0<n< N-l and |x[n]|2 > 0.5    max    \x[n]\2}, (2.3) 
l -      - i   i  Ji    -        o<n<JV-l'   L   J 

where the number 0.5 comes from the common 3dB bandwidth definition in communications. Then, 

the SNR is defined as 
SNR^BI*MI , (2.4) 

where \B\ denotes the cardinality of the set B. Notice that this definition is similar to the SNR definition 

in communications, where the signal is only considered in its bandwidth. 

One can clearly see that the SNR in (2.4) is always greater than or equal to the SNR in (2.2) 

because the mean in (2.4) is only taken over the first large values in the whole domain. With the SNR 

definition in (2.4), the SNR in the time domain for the signal in Fig. 1(a) is -8.4dB but the SNR in 

the frequency domain for the signal in Fig. 1(b) is 16.3dB. Although about 2.6dB SNR is increased 

over the original definition in "(2.2), the SNR in the frequency domain is significantly better than the 

old SNR, that is -lldB, in describing the signal characteristics over the noise. The time domain SNR 

increase is consistent for relatively stationary signals without dramatic jumpings in the time domain. 

3    Signal-to-Noise Ratio in the Joint Time-Frequency Domain 

In this section, we analyze the SNR in the joint time-frequency domain for the short-time Fourier 

transform, where the SNR defined in (2.4) is used. In order to do so, we first describe a multicomponent 

signal model. 

3.1     Multicomponent Signal Model 

Throughout the rest of this paper, we use the following multicomponent signal model, 

K 

y(t) = ]T xk(t) + r,(t), 0 < t < T0) (3.1) 

where we have the following assumptions 

(i) t is the continuous-time variable and limited in the finite observation interval [0,To]. 

(ii) r)(t) is an additive white noise process with mean 0 and variance a2. It is not differentiable at any 

time t G [0,To] and independent of £*(£), 1 < k < K. 

(iii) For each k, 1 < k < K, xjt(t) is a monocomponent time-varying signal, i.e., 

xk(t) = AfcWe^W (3.2) 

where Ak{t) is the slowly varying amplitude envelope of x*(<), and <j)k{t) is the phase of Xk(t). 

The magnitude of the first order derivative Ak(t) is upper bounded by Ak, i.e., |^(*)| < Ak 



for a positive constant Ak, and the magnitude of the second order derivative <f>l(t) is also upper 

bounded by fa, i.e., \(f>'k(t)\ < <t>k for a positive constant <f>k for all t € [0,T0]. 

(iv) The K instantaneous frequencies (p'k{t), 1 < k < K, are distinct. 

Additional details on multicomponent signals can be found in [8]. It can be easily shown that the 

process y(t) in (3.1) has locally stationary behavior [9-10] in the following sense 

\Ryy(t + u,s + u)- Ryy{t, s)\ < C\u\, (3-3) 

for a positive constant C, where Ryy denotes the autocorrelation function of y(t). 

As a remark, the nondifferentiability assumption (ii) of T}{t) makes sense. An example of such 

processes is the Wiener process, see for example [13]. This assumption implies that any sampled 

segment of r]{t) in any time interval is a white noise and has fiat Fourier spectrum. 

3.2    Short-Time Fourier Transform for Multicomponent Signals and SNR Calcula- 

tions 

For each monocomponent signal xk(t) in (3.1), by (i)-(iii) it can be shown that there exists ek > 0 such 

that, for any s € (e*,To — ek), 

xk(s + t) « A*(a)eW*W+**Wt), t € [-ek,ek], 

where the linear term Äk(s)t of t does not appear because of the "slowly varying" assumption in (iii) on 

the amplitude envelope Ak(t). Since we have only finite many monocomponent signals xk(t) in (3.1), 

there exists t = min{efc, 1 < k < K} > 0 such that, for any s € (e,T0 - e) and any k, 1 < k < K, 

xk(s + t) « Ak(s)e*+"(•)+*!(»)«), t € [-e, e], (3.4) 

where t depends on the constants T0, Ak, <j>k, 1 < k < K. 
With (3.4), at each time s G (e,T0 - c) we apply N point discrete Fourier transform (DFT) for the 

signal y(t) for t € (a - f ,s + |] with the sampling rate JV/T for T = 2e. For convenience, we assume 

N is even. The DFT is 

Py[m,l} = ^=      £      j/((m + g)-)e-^, 0</<AT-l, (3.5) 
viv 9=_N/2+1 

iV 

where m is in the range such that (m - N/2 + l)T/N > 0 and (m + iV/2)T/iV < T0, i.e., 

iV-2^ ,T0      lw 

The above Py can be decomposed into 

K AT       O T1 1 

fyK *] = E ^M + P^m' '!> 0 < Z < iV - 1, —^- < m < (^ - -)JV, (3.6) 
fc=i 



where PXk[m,l] and P^m,!] are defined for Xk(t) and r)(t): 

Pxk [m, I] 

Pr,[m,l] 

1 N/2 T        a  ■ i 
£      **((m + ?)£)e" ^ 0 < / < N - 1, 

v/iV q=-N/2+l 

N/2 

N' 

-j=     E     ^((m + g)^)e-^,0<i<iV-l, 
ViV q=-N/2+l 

N' 

(3.7) 

(3.8) 

Since r?(£) is a white noise process, for each m the Fourier spectrum J5(|P^[m, Z]|2) are flat over the whole 

frequency domain 0 < I < N — 1 as mentioned in Section 3.1. This implies that, the mean power of the 

noise spectrum P^m^l] is also a2, which is the same as in the time domain. 

We next want to study the mean power of PXk[m,l] for the signal. Using (3.4), 

PXk [m, I] 
V^        At     T     j{^(mI)Wl(mi)(m+,)I-^} 

g=-N/2+l 
VN    ^..""'"'N 

4=^(rnV^(m")+*1(m")m^      E      6**=*^. 
^      N q=-m^ 

Therefore, 

(3.9) \PXk[m,l]\ « \Ak(m^)\VNS [l-4&p^ . 

By the assumption of distinct instantaneous frequencies <f>k(mj^) for 1 < k < K, the Fourier power 

spectrum IPrJm,/]!2 are located at K different frequencies 4>k(Tn^)T/(2n), 1 < k < K. This implies 

2 v / .1   .        Tt .  \      2 

Ei^M «■ N 

K 

"E 
k=i 

±^H'-^) 
rp       2 

^fc(m—) Vt-*y (3.10) 

T Therefore, for each fixed time s = m-^-, in the frequency domain, 

max 
0KKN-1 

K 

Elpxjm,/] 
*=i 

K 

>^E 
*;=! 

T 
4t(m—) (3.11) 

Now, let us come back to the time domain signal y(m^).  The noise mean power is a2.  The signal 

power at each time t = mjj is 

K 

E^(m^) 
Jfc=l 

N' 

K 

£ E 
<fc=l 

4*(m-) 
tf 

<*E 
fc=i 

ji    2 

(3.12) 

By comparing (3.11) with (3.12), it is clear that the following relationship between the SNRt/ in the 

joint time-frequency domain of (3.6) and the SNRt in the time domain of (3.1) at the sampling points 
T 

SNR,  -°-V (3.13) 



where 0.5 comes from the SNR definition in (2.3)-(3.4). Therefore, as the window size T is small enough 

™M>0(>L). (3-14) 
SNRt  ~     \K) 

Notice that the assumption of small enough window size T is equivalent to the assumption of fast enough 

sampling rate N/T. The derivation of (3.14) implies the following theorem. 

Theorem 1 For a multicomponent signal with K many monocomponents, the SNR in the joint time- 

frequency domain with the short-time Fourier transform with the rectangular window of size T, and 

the sampling rate N/T, increases over the SNR in the time domain on the order ofO(N/K) when the 

sampling rate is fast enough. Given the number K, this increase rate 0(N/K) is optimal. 

Proof: The first part has been proved by the above argument. The optimality can be proved by taking 

Ak(t) = 1 and Mt) = ckt
2 for proper constants ck ? 0 for 1 < k < K, and noticing that the inequalities 

in (3.9)-(3.12) become equalities in this case. □ 

4 Numerical Example 

For simplicity in computations, we choose the following two-component signal model 

y(t) = <?*** + e*'" + r,(t), 0 < t < 2, (4-1) 

where r,(0 is an additive white Gaussian noise with mean 0 and variance a2 = 9. The window size for 

the short-time Fourier transform is 1/8. The following constant of the SNR increase rate in terms of 

the number of points N of the DFT is illustrated in Fig. 2: 

SNR«/ /N (42) 

SNRt / K' 

One can see that, for this particular signal, 

SN%^055£    MJV_400I (4.3) 
SNRt K 

From Fig. 2, one can also see that the constants of the SNR increase rate have large variance when the 

sampling rate is not large enough but almost become invariant when the sampling rate becomes large. 

5 Conclusion 

In this paper, we have quantitatively analyzed the SNR increase rate in the joint time-frequency domain 

with the short-time Fourier transform over the SNR in the time domain for multicomponent signals in 

additive white noise. We have shown that the rate of the SNR increase is on the order of 0(N/K), where 

K is the number of monocomponents in a signal, N/T is the sampling rate and T is the window size in 

the short-time Fourier transform. Although we have presented quantitative analysis for the short-time 

Fourier transform with rectangular window functions, we believe that the result also holds for Gaussian 

window functions. 
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Figure Captions 

Fig. 1 : Single tone signal. 

Fig. 2 : SNR increase rate. 
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Convergence of An Iterative Time-Variant Filtering Based on 

Discrete Gabor Transform 

Xiang-Gen Xia* Shie Qian* 

Abstract 

An iterative time-variant filtering based on discrete Gabor transform (DGT) has been re- 
cently proposed by the authors. In this paper, we present a proof of the convergence of the 
iterative algorithm under a sufficient condition on the analysis and synthesis window functions 
of the DGT. In the meanwhile, we show that the iterative algorithm refines the least squares 
solution. 

1    Introduction 

Time-frequency (TF) transforms (or analysis) add redundancy in the joint TF domain to the 

signal in the time domain. They spread noise over the whole TF plane and meanwhile contain the 

signal information in some localized areas as shown in Fig. l(a)-(c). Therefore, TF transforms 

usually significantly increase the signal-to-noise ratio in the TF domain, see for example [19] for a 

quantitative analysis. In other words, signals in the TF domain may be easier to be detected than 

in the time domain alone. With this observation, one might use the following idea for extracting 

the signal in the time domain analogous to traditional linear filtering: take the TF transform of a 

noisy signal s{t); mask the TF transform in the TF plane as shown in Fig. 1(d); take the inverse 

TF transform of the masked TF transform shown in Fig. 1 (d) as s{t). With traditional linear 

filtering, there is no question about that the Fourier spectrum of the filtered signal s(t) has the 

desired frequency band. This is because the Fourier transform is a one-to-one and onto mapping 

for finite energy signals. Any signal in the frequency domain corresponds to a unique signal in the 

time domain. This is, however, no longer true in general for TF transforms. Not every signal in 

the joint time-frequency domain corresponds to a signal in the time domain due to the fact that 

TF transforms are redundant and not onto. This implies that the TF transform of the filtered s(t) 
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may not fall in the masked domain as shown in Fig. 1 (d)-(e). With this observation, let us state 

the general time-frequency synthesis problem (also known as the problem of filtering, time-varying, 

nonstationafy wideband signals). Given a user specified, localized time-frequency domain in the 

TF plane, find the corresponding time domain waveform. The traditional approach to this problem 

is the least squares solution method, which finds the signal in the time domain that minimizes 

the squared error between the signal's TF transform and the desired one (see, for example, [1] for 

ambiguity functions, [2-4] for TF transforms). For other approaches, see, for example, [5]. There 

are two drawbacks to the least squares solution method. The first one is that although the error 

between the TF transform of the solution and the desired one is minimized in the mean squared 

error sense, the TF transform of the solution is not guaranteed to have the desired time-frequency 

characteristics. This means the solution may not be the desired one as illustrated later by examples. 

As a result, the performance is limited, which will be seen from our numerical results later. The 

second drawback is the computational complexity when signals are fairly long, which is quite often 

the case in practice. This is because the calculation of the pseudo inverses of the matrices needed for 

the least squares solution method is computationally expensive when their sizes are large. Recently, 

an iterative time-variant filtering method based on discrete Gabor transform has been proposed by 

the authors, see for example [6, 7, 18]. 

In this paper, we present a proof of the convergence of the iterative algorithm proposed in [6, 7] 

under a sufficient condition on the window functions of discrete Gabor transforms. We also prove 

that, under these conditions, the first iteration of the iterative algorithm is exactly the least squares 

solution. Improvement over the least squares solution occurs with more iterations, which can be 

seen dearly from our numerical examples. This paper is organized as follows. In Section 2, we 

first briefly review discrete Gabor transforms, then restate the iterative algorithm for time-varying 

filtering proposed in [6, 7] and finally present a proof of the convergence. In Section 3, we present 

some numerical examples. 

2    Convergence of the Iterative Time-Varying Filtering 

In this section, we first describe the iterative time-varying filtering algorithm proposed in [6, 7] and 

then study its convergence. 



2.1    Iterative algorithm 

Let us first review the DGT studied by Wexler and Raz [8]. Let a signal s[k], a synthesis window 

function h[n] and an analysis window function j[n] be all periodic with the same period L. Then, 

M-\N-\ 

m=0 n=0 

Cm,„=X:#]7m,„W, "(2-2) 
Jfc=0 

hm,n[k) = h{k -m&M)W£ANk, (2.3) 

7m,n[*] = ilk - mAM]W£AN-k, (2.4) 

and WL - exp{j2n/L), j = %/-!, AM and AN are the time and the frequency sampling interval 

lengths, M and N are the number of sampling points in the time and the frequency domains, 

M ■ AM = N ■ AN = L, MN > L (or AM AN < L). The coefficients Cm>n are called the discrete 

Gabor transform (DGT) of the signal s[k] and the representation (2.1) is called the inverse discrete 

Gabor transform (IDGT) of the coefficients Cm,„. 

One condition on the analysis and synthesis window functions j[k] and h[k] obtained by Wexler 

and Raz [8] is the following identity: 

L-\ 
Y, h[k + mN]W[nMk-y*[k] = 8[m]S[n],  0 < m < AN - 1,0 < n < AM - 1. (2.5) 
*=o 

The DGT and IDGT can be also represented in the following matrix forms. Let 

C = (Co,o, C0,x, • • •, CM-I,N-I)
T

,   S = (s[0], s[l], • • •, s[L - 1])T. 

The DGT can be represented by the MN x L matrix GMNXL with its {mN + n)th row and A;th 

column element 7^in[fc]. The IDGT can be represented by the L x MN matrix HLxMN with its 

Jtth row and {mN + n)th column element hm^n[k]. Thus, 

C = GMNXLS   and   s = HLXMNC. (2.6) 

The condition (2.5) implies that 

HLXMNGMN-XL = hxL, (2.7) 

where Iixi is the L x L identity matrix. 

As mentioned in the introduction, the oversampling, which corresponds to the case when MN > 

L, of the DGT adds redundancy and is usually preferred for noise reduction applications. This can 



be also seen from [19] where it is proved that the SNR in the transform domain for short-time 

Fourier transforms increases when the sampling rate increases. Prom (2.1)-(2.5), (2.6)-(2.7), one 

can see that"an L dimensional signal s is transformed into an MN dimensional signal C and MN 

is greater than L due to the oversampling. Therefore, only a small set of MN dimensional signals 

in the TF plane have their corresponding time waveforms with length L. Let DMNxMN denote 

the mask transform, specifically, a diagonal matrix with diagonal elements either 0 or 1. Let s be 

a signal with length L in the time domain. The first step in the time-varying filtering is to mask 

the TF transform of s 

Ci = DMNXMNGMNXLS, 

where DMNXMN masks a desired domain in the TF plane. Since the DGT GMNXL is a redundant 

transformation, the IDGT of Ci, HLxMlfCi, may not fall in the mask. In another words, generally, 

GMNXLHLXMNCI ^ DMNXMNGMNXLHLXMNVI, (2-8) 

where MN > L, which is illustrated in Fig. 1(e). Notice that, in the critical sampling case, i.e., 

MN = L, the inequality (2.8) becomes equality. An intuitive method to reduce the difference 

between the right and the left hand sides of (2.8) is to mask the right hand side of (2.8) again and 

repeat the procedure, which leads to our iterative algorithm: 

(2-9) 

Q+i   =   DMNXMNGMNXL^I, (2-10) 

S(+I   =   HLXMNCI+\, (2-11) 

I = 0,1,2,.... 

The above iterative algorithm is illustrated in Fig. 2. 

The iterative algorithm (2.9)-(2.11) is an alternating projection procedure. It is used quite often 

in signal recovery applications, such as signal extrapolation and phase retrieval. The important 

issues for this algorithm are: When does the algorithm converge? If it converges, to what does it 

converge? We study these questions in the next subsection. 

Before going to the convergence, let us see what the least squares solution is. Based on the 

definition, the least squares solution is the L x 1 vector x that minimizes 

\\GMNXL* - DMNXMNGMNXL^W = min \\GMNXLX - DMNXMNGMNXLS\\, (2.12) 

where norm || • || is the usual Euclidean norm. Then, 

x = (G*MNXLGMNXL)~
1
G*MNXLDMNXMNGMNXLS, (2.13) 



where t stands for the complex conjugate and transpose. Clearly, when the signal length L is large, 

the inverse matrix computation is expensive. Although the error in (2.12) is minimized, the DGT of 

the least squares solution x may not fall in the mask DMNXMN- GMNXL* ¥" DMNXMNGMNXL*-, 

when MN > L. Note that when the analysis and synthesis window functions are the same, i.e., 

HLXMN = G^MNxL, The least squares solution x in (2.13) reduces to 

x = HLXMNDMNXMNGMNXLS, 

which is the first step si of the iterative algorithm (2.9)-(2.11). 

2.2    Convergence of the iterative algorithm 

In this subsection, we want to have a condition on the window functions h[n] and j[n] for the 

convergence of (2.9)-(2.11).   We show that, under this condition, the limit of the sequence sj in 

(2.11) does have its DGT falling in the mask DMNXMN- 

Rewrite (2.9)-(2.11) as follows 

C/+i = DMNXMNGMNXLHLXMNCI = (DMNXMNGMNXLHLXMN) DMNXMNGMNXLS,   (2.14) 

where / = 1,2,.... If we can prove that both matrices DMNXMN and the product GMNXLHLXMN 

are orthogonal projections, the above iterative algorithm converges by the alternating orthogonal 

projection theorem (see [14]). A matrix A is an orthogonal projection [14-15] means that (i) A2 = A 

and (ii) .4* = A, and vice versa. 

It is clear that the mask matrix DMNXMN is an orthogonal projection. For the product matrix 

GUXXI.HLXMN we have, by (2.7), 

{GMNXLHLXMN)
2
 = GMNXLHLXMN, (2-15) 

i.e., the condition (i) for an orthogonal projection is satisfied. For the Hermitian property (ii), we 

need the following condition on the window functions h and 7 (details can be found in Appendix): 

A/V-l AN-1 

J2 -y*[lN + k]h[lN + k + mAM}=   £  h*[lN + k]j[lN + k + mAM], (2.16) 
i=o 1=0 

for Jt = 0,1,..., N - 1 and m = 0,1,..., M - 1. 

With the above condition, the following lemmais not hard to prove. 

Lemma 1 The product matrix GMNXLHLXMN is Hermitian if and only if condition (2.16) for the 

window functions h and 7 holds . 



Proof:  To prove Lemma 1, we first re-express both DGT and IDGT matrices GMNxL and 

HLXMN by taking the advantage of the forms in (2.1)-(2.4). 

For I = 0,1, ...,M - 1, let Tt be the following LxL diagonal matrix 

Ti = diag(7*[0 - /AM], 7*[1 - /AM], • • ■ >7*[L - 1 - JAM]), (2.17) 

WNXN be the N points discrete Fourier transform matrix, i.e., WNXN = (WN
mn)o<m,n<N-i- Let 

WNxL be the following iV x L matrix consisting of AN many W^xJV as submatrices 

WNxL = {WNXN, WNXN, •••, WNXN)- 

Then, GMNXL can be rewritten as 

/    WNXIXO    \ 
WNxLT! 

GMNXL = 

\ WNXIXM-I / 

Similarly, the matrbc HLXMN can be rewritten as 

HLxMN = (&oW]
NxL, Ai^7Vxi' • • •' AM-l^txi)' 

where Aj is the following L x L diagonal matrbc similar to Tj: 

A, = diag(/i[0 - /AM], h[\ - 1AM], ■ ■ ■, h[L - 1 - /AM]). 

Therefore, 

/    ^x^roAoW^i      •••      WNxLTQAM-iWhxL    \ 

KWNXLTM-XAOW^L   ■■■   WNXLTM-I^M-IW},^ J 

For GMNXLHLKMN to be Hermitian we need to have 

wNxLrmAnwlxL = wNxLr*nA*mw*NxL. 

With the form (2.18) for WNxL, the above (2.23) can be simplified as follows. 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

wNxLrmAnw^NxL 



AN-l 
/ =     Yl  WNxNdisLg(j*[lN + 0-mAM]h[lN + 0-nAM],---, 

1=0 

7*[ZiV + N-1- mAM]h[lN + N-1- nAM])W^xN 

AN-l 

=   WNxN  J2 diag{j*[lN + 0-mAM]h[lN + 0-nAM],---, 
1=0 

7*[/AT + N - 1 - mAM]h[lN + N-1- nAM])W^xN 

Therefore, the Hermitian property (ii) for the matrix GMNXLHLXMN holds if and only if 

AN-l AN-l 
J2 -y*[lN + k-mAM]h[lN + k-nAM}=   £  h*[lN + k - mAM]j[lN + k ~ nAM], (2.24) 
i=o i=o 

for A; = 0,1,..., N - 1 and 0 < m, n < M - 1. 

Since h[n] and -y[n] are periodic with period L = MAM, the condition (2.24) is equivalent to 

AN-l AN-l 

J2  Y[lN + k-mAM]h[lN + k + nAM]=   £  h*[lN + k -mAM]>y[lN + k + nAM], (2.25) 
/=o      • '=o 

for A: = 0,1,..., N - 1 and 0 < m, n < M - 1. Notice that the difference between (2.24) and (2.25) 

is the difference of the signs in the front of the variable n. 

The condition (2.16) can be obtained from condition (2.25). This proves Lemma 1. □ 

With Lemma 1 and the alternating orthogonal projection theorem, we have proved the following 

convergence result. 

Theorem 1   When the synthesis and the analysis window functions h[n] and j[n] satisfy condition 

(2.16). the iterative algorithm (2.9)-(2.11) converges. 

There are two trivial cases where the condition (2.16) holds. The first case is the orthogonal- 

like ca.se: h[n] = -y[n] for all integer n. The second case is the critical sampling case: AM = N. 

Notice that the continuous Gabor transform is never orthogonal-like unless the window functions 

are badly localized in the frequency domain. This, however, is not the case for the DGT. The most 

orthogonal-like solution was studied by Qian et. al. in [9-11]. They showed that it is possible 

to have the analysis window function 7 very close to the synthesis window function h when h is 

truncated Gaussian. The error between h and 7 is less than 2 x 10"6 while they are of unit energy, 

and therefore the error is negligible. We will see numerical results later in the next section. 

We next want to see what the limit of the iterative algorithm (2.9)-(2.11) is, under the condition 

(2.16). Assume s is the limit of the sequence sj and C is the limit of C/. Then, 

C = DMNXMNGMNXLHLXMNC = DMNXMNGMNXLS, 



and 

We want to prove 

s = HLXMNDMNXMNGMNXLS- 

GMNXLS = DMNXMNGMNXLS, 

i.e., the DGT of s falls in the mask DMNXMN- Since GMNXLHLXMN is an orthogonal projection 

and 

DMNXMNGMNXLS   =   GMNXLHLXMNDMNXMNGMNXLS + (I - GMNXLHLXMN)DMNXMNGMNXLS 

=   GMNXLS + (I -GMNXLHLXMN)DMNXMNGMNXLS, (2.26) 

we have that 

GMNXLS -L -(I - GMNXLHLXMN)DMNXMNGMNXL&, 

where _L means orthogonal. Since DMNXMN is also an orthogonal projection and 

-(/ - GMNXLHLXMN)£>MNXMNGMNXLS = (I - DMNXMN)GMNXLS, 

WP have GMNXL* = DMNXMNGMNXLS- This proves the following Theorem 2. 

Theorem 2  Under condition (2.16), the DGT cf the limit s of the iterative algorithm (2.9)-(2.11) 

falls in the mask DMNXMN, *•€., 

GMNXLS = DMNXMNGMNXLS- (2.27) 

With the above result, one might ask whether it violates the known fact that an image of a TF 

transform of a signal in the TF plane can not be of compact support. This is because that a signal 

can not be time and band limited simultaneously. To answer this question, we first need to know 

that the above known fact is true for continuous TF transforms. Moreover, its proof is based upon 

the marginal properties of TF transforms. It may not be true for discrete TF transforms. In other 

words, discrete TF transforms may have compact support [6]. 

For the least squares solution x in (2.13), its Gabor transform GMNXL* is the orthogonal 

projection of DMNXMNGMNXL^ onto the space of all signals GMNXL*-- Since GMNXLHLXMN is 

an orthogonal projection, by (2.26), we have proved that the least squares solution 

x = HLXMNDMNXMNGMNXLS = si. 

This proves the following Theorem 3. 



Theorem 3 Under condition (2.16), the first iteration si of the iterative algorithm (2.9)-(2.11) is 

equal to the least squares solution in (2.13), i.e., s\ = x. 

With Theorem 3, one will see in the next section that the iterative algorithm (2.9)-(2.11) 

improves the least squares solution when the number of iterations increases, and in the meanwhile 

one does not need to compute the inverse matrix in (2.13). Theorem 3 also provides another way 

to compute the least squares solution when condition (2.16) holds on the window functions. Note 

that the least squares solution in (2.13) does not depend on the synthesis window function h[n]. 

This means that all the least squares solutions are the same for all pairs of synthesis and analysis 

window functions as long as the analysis window functions are the same, such as the Gaussian 

function. Therefore, the improvement from the iterative algorithm with window functions satisfying 

Condition (2.16) is over the least squares solutions not only for the window functions satisfying 

Conditon (2.16) but also for other window functions. 

3 Numerical Examples 

In this section, we test two sets of window functions of the DGT. The first set of window functions 

are the most orthogonal-like ones obtained from [11, 18-19]. For this set of window functions, 

their difference, and the absolute values of the differences between the left and right hand sides of 

condition (2.16) are shown in Fig. 3, respectively. The second set of window functions only satisfies 

the Wexler-Raz condtion (2.5) and correspondingly, they are shown in Fig. 4. The test signal is 

S{JI] = x[n] + n[n], where x[n] = cos(27r((n + 1)/115)3) and n[n] is white Gaussian noise. The mean 

square errors between the true signal x(n) and the filtered ones are shown in Fig. 5 and Fig. 6 for 

the two sets of window functions, respectively. One can clearly see the performance difference. 

4 Conclusion 

In this paper, we presented a convergence proof of the iterative time-variant filtering algorithm 

proposed in [6, 7]. We proved that, under the condition, the limit of the time waveforms from the 

iterative algorithms has the desired TF characteristics. We also proved that, under the condition, 

the first iteration is equal to the least squares solution. 
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Figure Captions 

Fig. 1 TF transform illustration. 

Fig. 2 Iterative time-varying filtering algorithm. 

Fig. 3 The first pair of window functions. 

Fig. 4 The second pair of window functions. 

Fig   5 The first set window functions: Solid line: SNR vs. iteration steps, where the least squares 

solution is marked by *; Dashed line: The errors between masked and unmasked DGT of the 

iteration solutions. 

Fig 6 The second set window functions: Solid line: SNR vs. iteration steps; Dashed line: The errors 

between masked and nmnasked DGT of the iteration solutions. The least squares solut.on ,s 

marked by *. . 
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Figure 1: TF transform illustration. 
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Figure 2: Iterative time-varying filtering algorithm. 
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Figure 3: The first pair of window functions. 
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Figure 4: The second pair of window functions. 
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Abstract 

In this paper, the determination of multiple frequencies in undersampled waveforms 
is studied using multiple smaller size discrete Fourier transforms (DFT). Given the sizes 
of multiple DFT, a range for the detectable frequencies in undersampled waveforms is 
presented. 

1    Introduction 

One intuitive way to detect the single frequency / in a single frequency complex-valued 

waveform x{t) is first to sample x(t) at a sampling frequency fs>f and then to implement 

the .V point discrete Fourier transform (DFT) with N > /, and a single peak in the DFT 

domain can be seen. The reason why the above sampling frequency f3 does not have to be 

at, least twice of the frequency / is because the frequency of the waveform x(t) is only single 

sided. When the frequency / is large, the sampling frequency is also large in this method. 

Several methods to detect a single frequency in undersampled waveforms have appeared, see 

for example [1-4]. The basic idea for these methods is to use multiple DFTs with smaller 

sizes for undersampled waveforms with different sampling rates. One of the advantages of 

'Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716. Email: 
xxia@ee.udel.edu; Phone: (302)831-8038. His work was supported in part by the Air Force Office of Scientific 
Research (AFOSR) under Grant No. F49620-97-1-0253, and the National Science Foundation CAREER 
Program under Grant MIP-9703377, the 1998 Office of Naval Research Young Investigator Program (YIP) 
under Grant N00014-98-1-0644, and the Unversity of Delaware Research Foundation. 



using undersampled waveforms is the hardware cost reduction in applications [5]. In some 

applications, such as velocity synthetic aperture radar (VSAR) [8-9], the received signals 

may be of undersampled nature. 

In this paper, we study the estimation of multiple frequencies from undersampled complex 

valued waveforms by also using multiple DFTs for undersampled waveforms with different 

sampling rates. Given the sizes of these DFTs (or the sampling rates) and the number of 

multiple frequencies, we provide a range of the detectable frequencies. Note that a different 

approach was studied in [12] in angle estimation. 

2    Multiple Frequency Estimation 

Without loss of generality," we assume that the multiple frequencies in a waveform x(t) are 

fi = N{, f2 = N2,..., fP = Np and Ni, N2, ..., Np a,ve all nonnegative integers. For the integer 

frequency assumption, see for example [1]. The waveform x(t) is represented by 

x(t) = J2AleW, 
i=i 

where .4,. 1 < / < p, are p nonzero complex-valued coefficients. Let /, = m be the sampling 

frequency with a positive integer m. Then the sampled waveform is 

xm[n] = x(-) = £ Ate2«^™, n G Z. (1) 
m       i=\ 

The problem of interest is to detect the multiple frequencies Nh 1 < I < p, from the multiple 

undersampled x{t): xmr[n], n G Z, with mr <max{Ni, ...,NP} for 1 < r < 7. The main idea 

in the following study is to implement the mr point DFT for the undersampled waveforms 

xm,[n}, 0 < n < mr - 1 for 1 < r < 7. From these multiple DFTs, the multiple frequencies 

can be detected. To study the details for a general solution, let us first see the single 

frequency case, i.e., p = 1 in (1). In this case, let N = Nx. Then 

xmr [n] = Ae2*iNn'm', n G Z, A ± 0. (2) 



Let N = nTmr + kr, 0 < kr < mr - 1, i.e., kT = N mod mr, then the mr point DFT of 

xmr[n], 0 < n < mr - 1, is 

DFTmr (xmr [n]) = A6(k - kr), 0 < k < mr - 1. (3) 

That is, the residue kr = N mod mr can be detected from the mr point DFT of xmr[n] for 

1 < r < 7. Therefore, to detect the frequency iV becomes to determine the integer N from 

all the residues kr for 1 < r < 7. The following lemma tells us the range of the detectable 

iV given mi,m2)..., mT, which is called the dynamic range in [1]. 

Lemma 1  The above single frequency N can be uniquely determined if 

0 < N < /cm{mi,m2,...,mr}, ■   (4) 

where, km denotes least common multiple. 

Proof: Let m =lcm{m1,m2, ...,mr}. For N > 0, let SN denote the 1 x 7 integer vector 

SN 4 (ki{N),k2(N), • • •, fc7(iV)) with /cr(7V) = JV mod mr. (5) 

To prove Lemma 1, it is sufficient to prove that, for any two different integers Ni and N2 

with 0 < A'i ^ N2 <m, the vectors S^ ¥" SN2- Assume this is not true, i.e., there exist two 

integers .\\ and N2 with 0 < Ni ^ N2 < m such that SNX = SVa- In other words, iV*i - N2 is 

a multiple of mr for each 1 < r < 7. It implies Nx-N2 = nm for a nonzero integer n, which 

is impossible when 0 < Ni,N2 <m. This contradicts with the assumption, i.e., Lemma 1 is 

proved. Ü 

Lemma 1 is basically the Chinese Remainder Theorem (CRT), see for example [7]. It is 

clear that the single frequency N can be found from the detected residues kr, 1 < r < 7, by 

using the CRT. The proof suggests another method to detect N by simply looking up the 

table of the vectors 5^ defined in (5), which can be done in priori. As a remark, the reason 



for maintaining the above proof is to motivate the following general solution for multiple 

frequency estimation. 

We now study the multiple frequency estimation problem, where p frequencies appear in 

a waveform x(t) with its undersampled versions shown in (1) with m = mi,m2, ...,m7. Let 

kltr = Ni mod mr, 1 < I < p, 1 < r < j. (6) 

Then the mT point DFT of xmr [n], 0 < n < mr - 1, is 

DFTmr(xmr[n]) = J2AtS(k - *,,,), 0 < k < mr - 1, 1 < r < 7- (7) 
i=i 

This tells us that the residue frequencies kltf can be seen as peaks in the DFT domain, i.e., 

they can be detected from the mT point DFT of xmr[n}. Thus, the determination of the 

original p frequencies Ni,N2,...,Np becomes the determination of the nonnegative integers 

jVj, ;V2,..., Np from their residues kliT = Nr mod mr for 1 < / < p and 1 < r < 7. The 

following result gives a range of Nu N2, ..., Np for the uniqueness of the determination. 

Theorem 1 Assume that a complex valued waveform x(t) contains p different frequencies 

ft = -V/ > 0 for 1 < I < p. Let mr> 1 < r < 7, be 7 sampling rates in the undersampled 

versions xmr[n) of x(t) in (1) with m = mT, 1 < r < 7. Let 

7 = r)p + e, 0 < e < p, (8) 

where TJ t.s a nonnegative integer. Then the p frequencies fi = Ni>Oforl<l<pcan be 

uniquely determined by using the mr point DFT of xmr [n] forl<r<jif 

max{NuN2,---,NP} < max{m,mi,m2, • • •,m7}, (9) 

where 
^ f mini<ri<r2<...<r,<7/cm{mri,mr2,---,mrJ,   ifn>0 

m     1 0, otherwise, 
(10) 

where n is defined in (8). 



Proof: If m < max{m1,m2, • •-,m7}, Theorem 1 is straightforward by simply using 

the single DFT for the maximum mr, 1 < r < 7. Therefore, in what follows we assume 

m > max{mi,m2, • • -,m7}. 

For an integer N, let klfr(N) = N mod mr. For nonnegative integers NUN2,...,NP, let 

Sr(Ni,---, Np) be the following set 

Sr(Nlt ■■■,Np) = {A1>r(M), • • •, kp,r(Np)}. (11) 

Let S(Ni, ■■■, Np) be the following product set 

S(N1,---,Np) = S1(N1,---,Np)x..-xS1(N1,...,Np). (12) 

To prove Theorem 1, it is sufficient to prove the following uniqueness: if there are two sets of 

p different nonnegative integer frequencies {NUN2,...,NP} and {MuM2,...,Mp} such that 

5(Ari, ■ • •, Np) = S(MU • • •, Mp), max{NuN2, • • •, JVP} < m, and max{Mi, M2, ■ ■ •, Mp} < 

rn. then the two frequency sets are equal, i.e., {NuN2,...,Np} = {MuM2,...,Mp}. We first 

prove that {Nu N2, ...,NP } c {Mu M2, ...,MP}. 

By the assumption m > max{mx, m2,..., m7} in the beginning of the proof, we know that 

// > 1. By the condition S(NU ■■-,NT) = S(MU • • •, MT) we obtain that for Nt and each mr 

there exists at least one integer denoted by yr with 1 < yr < p = r such that Nx - MVr = 0 

mod mr for 1 < r < 7. By (8), on the other hand, 7 is at least 77 times larger than r = p. 

This means that there are at least 77 many mn,..., mTji with 1 < rx < r2 < • ■ ■ < rv < 7 such 

that 

Mvn = Myr2 = ■ ■ • = Myrr) ± MlQ, 

where 1  < /0  < r.    Thus, Nx - Mlo  = 0 mod mTc for e = 1,2, ...,77.    By conditions 

maxfM, A^2,..., A^J < m <lcm{mri,..., mrJ and maxfMi, M2,..., MJ < m <lcm{mn,..., mrJ 

from the definition of m in (10), we conclude Nx = Mlo similar to the proof of Lemma 1. This 

proves that N, e {Mu M2,..., Mp}, and therefore {NUN2,.., Np} c {Mu M2,..., Mp} can be 
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similarly proved. By the same argument, we can prove {Mx, M2,.... Mp} C {M, N2,.... Np}. 

This proves Theorem 1. O 

From the proof, similar to what was mentioned after the proof of Lemma 1, the p 

frequencies Nu N2, .... Np can be detected by looking up the table of the product sets 

S{Nu N2,.... Np) defined in (11)-(12). The uniqueness in Theorem 1 guarantees the correct- 

ness of the solution when the condition (9) is satisfied, i.e., when these frequencies are in the 

range defined by (9). Other determination methods similar to the CRT for single frequency 

estimation might exist and are definitely interesting. 

3 Example 

I„ this section, we see onesimple example. Consider the case of two frequencies Nl and N2. 

We choose m, = 17, m2 = 19, m3 = 20, and m4 = 21. In this case, p = 2, 7 = 4, and 

therefore r, = 2 in (8). Clearly, m = m,m2 = 323. By Theorem 1, all two different frequencies 

.V, and N2 in the range [0,322] can be uniquely determined from the undersampled waveforms 

with sampling rates 17, 19, 20 and 21 by using 17, 19, 20 and 21 point DFTs, respectively. 

We ran see that the sampling rates are more than 15 times less than the Nyquist sampling 

rate when N{ and N2 are close to 322. 

4 Conclusion 

In this paper, we studied the estimation of multiple frequencies in undersampled complex 

valued waveforms using multiple DFTs. Given the sizes of these multiple DFTs or the 

undersampling rates, we provided a range for the detectable frequencies. Our example shows 

that a significant sampling rate reduction over the Nyquist sampling rate can be achieved. 

It should be noticed that the range determined in Theorem 1 might not be the maximal 

one. The search of the maximal range given p, mlf ..., m7 is under our current investigation. 

After this paper was written, some results on the maximal range were obtained in [10] 

6 



with a sufficient condition on the multiple frequencies. The approach in this paper might 

be generalized to multidimensional frequency estimation by using multidimensional Chinese 

Remainder Theorem in [6]. In [11], the results have been recently applied in enlarging the 

dynamic range of the detectable parameters for polynomial phase signals using multiple lag 

diversities in high-order ambiguity functions. 
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Abstract 

In this paper, we investigate the feasibility of blind 
naal recovery from undersampled data collected from 

','plurality receivers. We show that although an «n- 
I, sampled communication system is not completely 
„hntifiable m general, such an obstacle can be over- 
,,mt by employing proper precoding with an arbitrary 
„mount of the bandwidth expansion in the transmitter. 
Ihr mam contribution of this study is the formulation 
,./ a generic framework for the undersampled systems, 
,,„d the derivation of conditions for a'class of filters 
„Inch we term ambiguity resistant precoders. 

I    Introduction 

Because of its practical significance, blind identi- 
liraiion of FIR channel has received considerable at- 
i.-mion in the past decade in communications and sig- 
.,:,! processing [l]. To date, almost all research on 
Mind identification deals with channel outputs that 
.,r- sampled at least at the baud rate. In certain appli- 
cations a communication system may be undersam- 
,,/,</ with rate \/LT(L> 1), for reasons ranging from 
fixed hardware to variable data rates of source signals. 
( lcarly, perfect signal recovery is not possible in these 
-.■.•narios. However, when a collection of low rate ob- 
- rvations is available, it may be feasible to restore the 
-»urce signals by combining partial information from 

• lifferent receivers. 
In this paper, we study the application of multiple 

receivers in blind source recovery for undersampled 
■ ommunication systems. To put this into perspective, 
• onsider an U-receiver undersampled system depicted 
m Figure 1, where L is an integer. Since the receiver 
part is mathematically equivalent to a multiple input 
■ind multiple output (MIMO) system, one can at most 
Mindly recover the input towards a matrix ambiguity. 

•This work was sponsored in part by the Air Force Office 
•f Scientific Research (AFOSR) under Grants No. F49620-97- 
1-0318 and No. F49620-97-1-0253, and the National Science 
Foundation CAREER Program under Grants MIP-9703074 and 
MIP-9703377. 

The question, then, becomes: is there any affordable 
way to restore the blind identifiability? 

Filterbank precoding has been proposed to com- 
bat ISI channels in wireless communications [3]. The 
same concept has been applied by Giannakis for blind 
channel identification.   In [4], it is shown that an 
FIR channel can be blindly determined with mini- 
mum redundancy introduced by precoding. Motivated 
by these studies, we propose to use precoding tech- 
niques to solve the blind identification problem for the 
undersampled system.  More specifically, we study a 
class of ambiguity resistant precoders which is capa- 
ble of removing the ambiguity introduced by under- 
sampling.   In the remainder of this paper, we shall 
denote the system in Figure 1 with rate K/N pre- 
coder as {{K,N)\{L,M)}.  A regular communication 
system with transmission induced redundancy can be 
cast into the same framework. 

2    A Generic Framework 

Throughout our discussion, the follow assumptions 
are invoked for the [(A', N):(L, M)]system under con- 

sideration: 

A.l: The precoding filter has dimension N x A', where 

N> A; 

A.2: N/K x M/L > 1, »•«-, NM > KL. 

A.l is clearly required in the precoding, otherwise 
there will be no increase in redundancy which ren- 
ders blind identification impossible. The same is true 
A.2 since MN/KL quantifies the overall system re- 
dundancy. Under A.l and A.2, there are still many 
possible combinations of the four parameters, A, N, 
L, and M, which make a unified analysis difficult. The 
following lemma simplifies the our data model by cast- 
ing any system that satisfies A.l and A.2 into a generic 
framework. 

Lemma 1 Any ((A, JV);(£, M)] system with N > 
A and N_ M > A L can be cast into .a generic 
[{K,N)\{N,M)\ system with A < N < M. 
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Figure 1: Precoding for undersampled an antenna array system 

When L = M = L tne system becomes a symbol- 
rate communication system with input redundancy. 
The reader is referred to [5] for proofs of the above 
lemma and theorems in the ensuing sections. 

3    Blind Identification 
The output of the generic system in Figure 2 can 

be expressed as 

y.w.i(--) = HMXL(--)uMxl(z) = H(Z)G„XK(--)SKXI(--), 

where H(:) characterizes the unknown channel, 
whereas G(;) represents the known precoder. The 
problem herein is to determine the input, s(z), and m 
many cases the channel, H(z), from the output, y(z), 
using only knowledge of the precoder filter, G(z). 

To facilitate the forthcoming discussion, let us first 
lay some groundwork by reviewing an important result 
regarding FIR MI MO systems. 

Theorem I [6] For an N-input M-output (M > N) 
FIR system with transfer function H(r), the following 
statements are equivalent: 

s\n Blocking with 
block size A' 

• n 
G(z] 

un 
H(r) 

yH 

N x K M xiV 

Figure 2: A generic representation 

1. H(z) is irreducible, i.e., rank[H(z)] = N, Vz € C 
and rank[H„] = N; 

2. H(z) and the input vector u(z) can be identified 
uptoanNxN invertible constant ambiguity ma- 
trix from the outputs using second order statistics. 

If the precoder is designed to be irreducible, the 

composite transfer function, Hc(z) = H(z)G(z), is 
clearly irreducible. Theorem 1 asserts that the system 
input s(z) can only be determined within *K xK ma- 
trix ambiguity directly from y(z). However the prob- 
lem of interest here is to find s(z) and Hc(z) such that 

y(z) = He(z)s(z),    subject to He(z) = H(z)G(z), 

where G(z) is a known precoder. This motivates the 
following blind identifiability concept. 
Definition: The system in Figure 2 is blindly iden- 
tifiable i/i(z) = as(z) and H(z) = /?H(z), where a 
and ß are two scalars, are the only solution for the fol- 
lowing system given the output y(z) and the precoder 
G(z): y(z) = H(z)G(z)s(z). 

We tackle the blind identification problem in two 
steps: (i) determine what we term the ambiguous in- 
puts, 

ü(z):   Tü(z) = u(z), (1) 

where T is an N x N fully rank constant matrix, 
blindly from the system output y(z). It can be accom- 
plished using many existing approaches when H(z) is 
irreducible; (ii) Once ü(z) is identified, the blind iden- 
tification problem reduces to whether or not »(z) can 
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I„. determined from ü(z) in the presence of a full rank 
.uiibiguity matrix T (or T"1). We then show that 
ilie-r»' exists a class of ambiguity resistant precoders 
«Inch can resolve the matrix ambiguity without addi- 
nonal information. Since Step (i) is well studied [6, 7], 
,„r focus in the remainder of this paper will be de- 
voted to the precoder part. 

3.1    Ambiguity Resistant (AR) Precoders 

We first define the concept of ambiguity resistance. 

Definition: An N x K FIR irreducible precoding fil- 
ler G(z) is ambiguity resistant if its input s(z) can be 
uniquely determined up to a scalar from its ambiguous 
output, {ü(z) : Tü(z) = u(z)}, where T is an an- 
Lnonn tnvertible N x N constant matrix. 

A precoder is not ambiguity resistant if there exists 
i non-identity matrix R ^ QT and s(z) ^ ßs(z) such 
ihat Rü(r) = G(z)s(z), or equivalently, 

RT-1G(r)s(z) = G(z)s(z), 

for any given s(z). 
Denote E = RT"1 and rewrite the above equation 

using matrix input and matrix output, the precoder is 
ambiguity resistant unless there exists an N x N full 
rank, nonidentical, constant matrix E and a A' x A' 
nonidentical matrix X(z) such that 

EG(z) = G(z)X(z) (2) 

X(z) is the polynomial ambiguity of the input which 
cannot be determined. Note that since G(z) is irre- 
ducible. det(\(z)) in (2) is a nonzero constant, i.e., 
X(:) is unimodular. 

The above is summarized in the following theorem. 

Theorem 2 ^n.Vx A' FIR irreducible precoding fil- 
l( r G(:) is ambiguity resistant if and only if there does 
not ezist an N x N full rank constant matnz E ^ al 
for any constant a, and a A" x K matrix X(z) £ 01 
for any constant ß, such that the above identity (2) 
holds. 

To examine the ambiguity resistancy of a given pre- 
coder, note that it follows from Equation (2) that 
X(.-) = G-'(z)EG(z). Hence, 

EG(z) = G(z)G"1(z)EG(z). (3) 

By representing the above equation in the time do- 
main, one may check the ambiguity resistancy of G(z) 
by solving a linear equation set. If E = ol for 
some constant o is the only nonzero solution, then 

G(z) is ambiguity resistant. Otherwise, it is nec- 
essary to check whether X(z) = 01 for some con- 
stant 0 or EG(:) = G(z). since it is possible to have 
EG(z) = G(r) with E # al. 

When A' = 1, X(;) = a for some nonzero constant 
o is always true. By Theorem 2, the following corol- 
lary is straightforward. 

Corollary 1 An N x 1 FIR tnvertible precoding filter 
G(z) is always ambiguity resistant for N > 1. 

Corollary 2 Any N x K with K > 1 block precoder 
G(z), i.e., G(z) I« a constant matrix, is not ambiguity 
resistant. 

Corollary 1 is not surprising since when K = 1, 
the [(l,N);(N,M)] system reduces to a conventional 
oversampled system which is clearly identifiable. With 
this result, we only need to consider the case of K > 1. 

Next, we want to present some necessary conditions 
on the ambiguity resistance. 

Theorem 3 // an N x K, K > 1, FIR irreducible 
precoder G(z) is ambiguity resistant, then 

1. there exist no full rank constant matrix E and 
invertible A" x A" polynomial matrix V(z) sucA 
that the first column in matrix EG(z)V(z) is 
(1,0,0,...,0)T; 

2. N > K. 

3. the order Q of G(z) must satisfy the following 
lower bound 

Q>N2 + K7-l-l. w -        NK 

The above Theorem will allow us to construct a 
family of AR precoders in Section 3.2. 

Lemma 2    [8)  When G„XK(z)  is irreducible,   its 
Smith-McMillan form is jiven by 

G = W(z) MCXK 

0 V(z), 

where WNX„(z) and VKXK(z) are referred to as the 
left and right unimodular matrices, respectively, in the 
Smith-McMillan decomposition of G(z). 

The left unimodular matrix, W(z), can be further 
decomposed into 

W(z) = \WNXK(z) Wtx(N_K)(z)] . 
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Clearly, W'(z), associated with the identity part of 
the middle Smith form, essentially defines the column 
span of G(z). The Smith-McMillan decomposition of 
a tall invertible matrix can be simplied as G(:) = 
W*(z)V(z), where W'(.-) is invertible. 

Theorem 4 A precodtng filter G(z) is ambiguity re- 
sistant if and only if there exists no N x N con- 
stant matrix E such that both W(z) and EW(:), 
W'(z) ^ aEW'(z), are left unimodular matrices in 
the Smith-McMillan decompositions ofG(z). 

3.2    A Family of AR Precoders 

Motivated from the necessary conditions in Theo- 
rem 3, we now want to construct a family of ambigu- 
ity resistant precoders G(z). We have the following 
result. 

Theorem 5 For any positive integer N > 1, the fol- 
lowing matrix G(z) with size N x (N - 1) is ambiguity 
resistant: 

G(.-) = 

1 0 0    • •     0 0   * 
-7 1 0    ■ •     0 0 
0 z~y 1   • •     0 0 

0 0 0    •• •    z-* 1 
0 0 0    •• •     0 x-f _ 

(4) 
for an integer 7^0. 

The above theorem can be easily modified for con- 
tructing simple AR precoders of any size. 

3.3    System Identifiability 

With the establishment of ambiguity resistant pre- 
coders. we now give a set of sufficient conditions for 
blind identifiability of the system in Figure 2. 

Theorem 6   The   system   depicted   in   Figure   2  is 
blindly identifiable when 

1.  G(z) is ambiguity resistant; 

t.  H{z) is irreducible; 

3. G(0 has order Q> f N<^R'K
+^-Qh-Re], wh 

Ro ~ fsf?H and Qh » the order ofH(z). 
ere 

4    Algebraic   Sequence   Identification 
Algorithm 

We derive in this section an algebraic algorithm 
which can accomplish blind identification with a finite 
number of observations. For this purpose we only con- 
sider noise-free data without claiming anything con- 
cerning the optimality of the algorithm. 

Since the ambiguous precoder output, {ü[n]}, can 
be identified using one of the existing multichannel 
blind identification algorithms, e.g., [9, 7]. we limit 
ourselves to the problem of removing the matrix am- 
biguity from {«(n]}. 

Given a finite collection of the ambiguous precoder 
outputs, {ü[n]}£l£, it is not difficult to establish the 
following relations from (1), 

diag(T--T) 

fi[0] 

Ü[Ä-1]J 
= S« 

■[Ä-1J 
.  (5) 

where Qn is a block Toeplitz matrix of G[n]. 
Upon denoting^ tt the t'th column of T, t = 

[if ■•■£]', and U = [ü'[0] •üT[Ä-l]]T©I^XWl 

we may rearrange Equation (5) with respect to its un- 
knowns, namely, s and t, and obtain 

[-<?„ Hi}=°- (6) 

Since we have NR equations with (R + Q)K + N3 

unknowns, the above equation set becomes overdeter- 
mined as R increases, provided that N > K. The 
system can be identified using simple least squares fit- 
ting when G(z) is ambiguity resistant. 

The above identification procedure can be summa- 
rized as follows, 

1. Determine the precoder output vectors within 
an ff x N matrix using any existing MIMO 
blind identification method (e.g., the subspace 
approach in [7, 6]). 

2. Form a linear equation set using the ambiguous 
precoder output vectors, {ü[n]}£-£, as in (6). 

3. Determine elements of the ambiguity matrix from 
the the least significant singular vector of (??). 

4. Recover the message signals as s(z) = 
G-^zJT-y*). 
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5    Numerical Examples 

Some numerical results are presented in this sec- 
,„„, to validate the identifiability and the efficacy of 
,|„. proposed algorithms. All examples involved an 
^.antenna system with the unsampling rate 3. The 
follow ambiguity resistant precoder described in Sec- 

tion 3.2 was used:  G(z) = 
.-2 1 
0 ,-2 

The sys- 

,,m simulated is [(2,3); (3,8)]; and the order of the 
channel is 2. 

The closed-form input estimation approach de- 
scribed in [7] was used to determine the ambiguous 
precoder output, ü[n]. Only 30 estimated vectors were 
applied to the proposed method. Figure 3 compares 
the signal constellations of the antenna outputs, the 
recovered precoder outputs, and the recovered signals. 
As shown in Figure 3 (c), existing approaches can only 
restore the transmitted signals, i.e., the precoder out- 
puts, within an matrix ambiguity. However, with pre- 
coding and the algorithm presented in this paper, the 
symbol sequence can be blindly recovery without sig- 
nificant increase in bandwidth. 

Figure 4 shows how the mean-square error (MSE) 
of the symbol estimates varies with the SNR. 

OS 

o 

-OS 

* - *> 

-1 -OS 0 OS I 
«•cm»«« pr*cxat Cveut 

Figure 3: Signal Constellations before and after Blind 
Recovery 

6    Concluding Remarks 
In this paper, we have shown that by introducing 

redundancy, albeit minimum, at the input through 
precoding techniques, blind identification can be ac- 
complished for undersampled systems in most scenar- 
ios. An important concept on precoders, i.e., ambigu- 
ity resistant precoders, has been introduced and used 

Figure 4: MSE vs. SNR 

in the blind identification. Some conditions for ambi- 
guity resistant precoders have been given and a family 
of such precoders has been presented. Also presented 
is an algebraic algorithm which determines the un- 
knowns of an undersampled system with a finite num- 
ber of data samples. 
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Abstract 

Ambiguity resistant (AR) preceding has been recenüy 
proposed in xntersymbol interference (ISI) and multipath 
cancellations, where the ISI/multipath channel may have 
frequency selective fading characteristics and its knowledge 
xs not necessarily known. With the AR preceding, no dxver_ 
sxty xs necessary at the receiver. In the precodxng, the AR 
property for a precoder plays an important rule. In this re- 
search  we introduce the concepts of precoder distance and 
optimal precoders, and characterize and construct all optx- 
mal systematic AR precoders, when additive channel ran- 
dorn noise xs concerned.   A necessary and sufficient con- 
dxtion for an AR precoder to be optimal is given, whxch xs 
easy to check.   With the optimal precoders, numerical sim- 
ulations are presented to show the improved performance 
over the known AR precoders in ISI cancellation applica- 

tions. 

1    Introduction ,      . , .. 
Intersvmbol interference (ISI) and multipath fading are 

important problems in digital communications.   Precod- 
ing is one of the techniques for the ISI/multipath cancel- 
lation     The conventional precoding techniques, such as 
Toml.nson-Harashima (TH) precoding and trellis precod- 
ing   and other ISI cancellation techniques, such as deci- 
sion feedback equalizers, usually suffer from the spectrum- 
null characteristics in frequency-selective fading channels. 
Meanwhile, the conventional precoding methods require 
the knowledge of the ISI channel at the transmitter, i.e., 
a feedback channel is needed. Recently, a new precoding 
technique has been introduced in [1-6].   Unlike the con- 
ventional precoding the new precoding expands the band- 
width in a minimum amount as an expense. The advan- 
tages of the new precoding are the Mowing: when there a 
no other noise but the ISI, it provides an ideal linear FIR 
equalizer at the receiver no matter whether or not the ISI 
channel has spectrum-null; it is channel independent, i.e., 
the feedback channel is not necessary; it is linear (no mod- 

«This research was supported in part by an initiative grant 
from the Department of Electrical Engineering, UnivenKyo 
Delaware, the Air Force Office of Scientific Research (AFOSR) 
under Grant No. F49620-97-1-0253, and the National Science 
Foundation CAREER Program under Grant MIP-9703377. 

ulo operation is needed); the transmitter or receiver does 
not have to know the ISI channel for the equalization, i.e., 
blind equalization is possible. 

For the blind equalization with the new precoding tech- 
nique, no diversity at the receiver is needed for a single re- 
ceiver system, and a reduced sampling rate over the baud 
rate can be achieved in an antenna array receiver system, 
which are not possible for the existing blind equalization 
techniques, see for example [7-8], without using precod- 
ing. For this purpose ambiguity resistant (AR) precoders 
have been introduced in [2-3] for combating the ambigu- 
ity induced by the ISI channel. Besides the AR precoder 
concept, some properties and families of AR precoders are 

presented in [2-5]. 
In this research, the concept of the optimal precoders 

is introduced, when additive channel random noise is con- 
cerned.   The optimality is based on the following crite- 
rion: the output symbols after the precoding should be as 
far away from each other as possible in the mean square 
sense.  This criterion is similar to the one in the modu- 
lation symbol design in communication systems to resist 
random errors. Given a precoder G(z), a polynomial ma- 
trix of the delay variable z_l, its distance is introduced by 
using the coefficients of its coefficient matrices. It is proved 
that the distance is proportional to the mean distance of 
the ISI channel output symbols, which controls the perfor- 
mance in resisting additive channel random noise.  Thus, 
an AR precoder is optimal if and only if it has the largest 
distance. We then characterize all optimal systematic AR 
precoders, where all systematic AR precoders are charac- 
terized in [4-5]. A necessary and sufficient condition for an 
AR precoder to be optimal is given, which is easy to check. 
The optimality is channel independent. Finally, Numerical 
examples are presented to illustrate the theory. 

2    Ambiguity Resistant Precoders via 
ISI Cancellation 

A precoded single receiver system and undersamplea 
antenna array receiver system are shown in Fig. 1 and Fig. 
2 respectively, where G(z) in Fig. 1 and G(z) in Fig. 2 
are precoders, H{z), tfi(z),.... Hu(z) are the ISI channe 
transfer functions, and all of them are either polynomial 
matrices or polynomials of the delay variable z~ . In what 
follows, boldface captial English letters denote polynomial 
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Figure 1: Single Antenna Receiver with Baud Sam- 

pling Rate. 

f»«co«W* 

tec, 
HOP 

tain redundancy is needed to resist errors.   In a band- 
^tedTannel, the minimum bandwidth expansion « de- 
SÄ. implies that the optima, parameter K should 
.    K = jv - 1 given N in an AR precoder. 

Let G(z) in Fig. 1 take the Mowing form 

Figure 2: An Undersampled Antenna Array Receiver 

System. 

Sin« the two systems in Fig. 1 and Fig. 2 can be con- 
vertto tw»uUi-i-P-t multi-output (MIMO) system^ 
^«ast,ng MIMO system identification techn,^' ** 
or Smple ffl. can be used.   However, based on the« 
routoo? M MO system identification, one can at most 
denUfy« MIMO sy*em to a constant matrix amb.gu.* 
£ o der to further resist the constant matrix amb.gu.ty 
Educed from an MIMO system identifiedi algor thm, 
Ibiguity res-stant precoding has been «*?*«*£> 
3].   A precoder G(z) of size S x K is called ambxguxty 

nsutant (AR) if 
(i) G(.) is irreducible, i.e., matrix G(z) has full rank for 

all complex values * including z - cc, 

(Ü) the following equation for K x K ***?**■£ 
trix V(z) has only trivial solution V(z) = O/K for 
a nonzero constant o: 

£G(z) = G(z)V(z), (2.1) 

G(x) -[        lN        1 G(z), 

where E is an N x N nonzero constant matrix and 
IK is the K x K identity matrix. 

Ith8sbeenshownin[2]thatG(z)isARimpUesK<N. 

In other words, the precoding has to expand «^ * ^ 
pies into N samples.   This is intuitively dear that cer- 

where M > N and G(z) is an N x tf polynomial matnx. 
KhL! been proved in 122-23] that, if the precede»» Figs^ 
i-21akVthe above forms and G(.) are AR, then the; »pjt 
i'aTm the systems in Figs. 1-2 can be blindly_ .den.- 
fiS from the output signals, where the IS channel *W. 
a i \ Hu(z\ mav have spectrum-null. In 12-5J, fam- 
Eft AL« beÄed. fa [2-3^Unear 
Sid-form blind identification algorithms have also been 

^SAR precoders have been generalized in [3] to poly- 
J£ MtoXrvutant (PAR) precoders for resisting 
ToSy consWt matrix ambiguities but also polynomial 
matrix ambiguities. The main advantage of usmg PAR 
orecodeTin the systems in Figs. 1-2 is that one can d> 
r5y SnTify theTput signals from the output signals 
by rLoMng the channel polynomial ambiguity without 
SnTiy MIMO system identification algonthm. I. A. 
St of this paper, for simplicity we however ^ on AR 
precoders although an analogous approach applies to PAR 

precoders. 
3    Optimal Ambiguity Resistant Pre- 

AlthougehSaU AR precoders found in (2-5] are good 
enough "'theory to be used to cancel the ISI wthout ad- 
dTve noise, AR precoders may have **»«£££ 
ence when there is additive no« m the chaane^Then^the 
question becomes which AR precoder u, "better, where 
Ctter" means better symbol error rate performance at 
2fr«eiJer after equalization. In this section, we study a 
ätSonlr AR prioders and also optimal ARprecoders 
by introducing the distance concept for a precoder. 

3.1    Distance and Criterion for AR Pre- 

coders 

To study the above question, let us briefly recall the 
cJenrioni error control coding theory. In error control 

S!nT innuts code coefficients and outputs are all m a 
Lte fieS'sui as 0 and 1, and the coding arithmetic is 
Sfimtl field arithmetic.   Therefore, the Hamming d» 
ance^tween two finite sequences of Os; ejdta -M*«* 
ZA  Moreover the minimum distance between all coded 
^endes^be cremated from the code itself. The mm- 

STSance controls the P«*«^£'* "££1 

^£T£££ pr^TtrSents and outputs 

f 
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has ISI besides additive random noise.   Although tha is 
Z case  the "distance" of the ISI channel output values 
also consols the performance in routing additive channel 
random noise.   To the first issue the conventual Ham- 
m.ng distance does not apply here and the Euclideanins- 
tance for the output signal values after precodmg needs to 
be used. Since it is hard to deal with the — EJ- 
clidean distance concept in the complex-valued field  the 
Euclidean distance here is in the mean sense when^the in- 
put signal is modeled as a complex-valued random process. 
To thfsecond issue, we need to investigate how the Eu- 
clidean distance of the output values of a precod«r affects 
ne Euclidean distance of the output values of the ISI char, 

nel. which determines the performance of the precoder in 
resisting additive random errors. 

To study these issues, let us go back to the systems with 
ISI in Figs. 1-2. By blocking the ISI channels from semi 
to parallel the systems in Figs. 1-2 can be unified into the 
oneThown in Fig^ 3, where X(z) is the K x 1 polynomial 
matrix of the z-transform of the input vectors, G(z) is the 
VxKAR precoder, H(z) is the M x N polynomiiü matrix 
of the ISI channel, ,(«) is the M x 1 polynomial matrix 
of the z-transform of the additive white.no.se vectors and 
Y(z) is the M x 1 polynomial matrix of the z-transform 
of the channel output vectors. 

S(z) T(Z) 

T1(Z) 

Figure 3: Unified System. 

Let 

Qc QH 

let us use matrix representations for linear transform»- 
Ins. By concatenating all vectors X(n) together, all vec- 
tors Wn) together, all vectors U{n) together, all vectors 
^together, and all vectors Y» together we obtain 
bigjer Wock vectors X = («(«)). V -(««)). U - W»)), 
„ = („(n)), and > = (y(n)). respectively. Let Q and U 
Lote the generalized Sylvester matrices, respectively: 

G(z) = £ G(n)z-\ H(z) = £ H{n)z'\ 
,-o •—° 

X(z) = ^X(n)z-. Y(.) = j;W". 

Let the z-transform of the precoder output vector sequence 

V(z)£G(z)X(«) = £V(n)*-, 
1» 

and the z-transform of the ISI channel output vector se- 
quence be 

U(z)^H(z)V(z) = £l/(n)z'\ 
n 

Notice that all X(n),K(n), V(n), V(n),n(n) are constant 
column vectors while G(n),H(n) are constant matrices. 
To study the mean distance for the output values in l/(n), 

«? = 

G(Qc) G(0) 

G(Qc) G(0) 

H = 

H{QH)    ••     ^(0)     ;••      ° 

0        •••    H{QH)    ■■■    H(0) 

(3.1) 

Then'       V = GX, w = w,  y = w + *        (3-2) 
In what Mows, for convenience we assume the input 

signal x(n) is an i.i.d. random process with mean zero 
and variance a\. Thus, random processes «(n) and u(n) 
have mean zero. We also assume all coefficients in the 
ISI channel H(z) are i.i.d with mean zero and variance 
1 and they are independent of «(«). Notice that due 
Gumption is only used to simplify the following analyse 
and it does not apply to the single receiver system u. Fig. 
1, where the corresponding channel matrix H(z) has the 
p'seudo-circulant structure [10]. 

The mean distances between all values of u(n) and all 
values of v(n) are 

k (E(5> 

■ *(■£ 

>(m) - v(n)|5) 

|u(m) - u(n)| (3.3) 

respectively, where E means the expectation. By the as- 
sumSons on the coefficients of H(z), it is not hard to see 
the following relationship between the mean distanced, of 
the ISI channel output values u(n) and the mean distance 
a\ of the precoder output values (or the ISI channel input 
values) v(n): ,. .* 

<U = and,. \iA> 
This implies that the performance of a precoder in resisting 
additive channel white noise is proportional to the mean 
distance of the precoder output values. This result solves 
the second issue arised in the beginning ^ this section and 
we only need to study the mean distance d„ of all the pre- 
coder output values for the performance of resisting addi- 
tive channel random errors. Based on the above analysis, 
we have the following definition for optimal AR precoders. 

Definition 1 An N * K  ambiguity resistant precoder 
G(z) Ü coiled optimal •/ the mean distance d. of <M me 
precoder output values Ü the maximal among allNxK am- 
biguity resistant precoders, when the total energy « fixed. 
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The squared mean distance d, can be calculated as 

d3
u = ^E|v(m)-v(n)|J 

m.n 

= 2(LN - l)^E(|v(n)|J) - 2 £ E(«(m)«-(»)).  (3 5) 

where L is the length of the precoder output vector se- 
quence V(n) and N is the precoder size.  Let Ä(m n) 
the correlation function of the random process »(»). i.e., 

fi(m,n) = E(v(m)v*(n)). 

Let ft be the correlation matrix of v{n), i.e., 

* = (ü(m.»)) = E (<?* (**)') = (*(**)'(?' = «*£. 

where » means the conjugate transpose. One car>«s that 
The ist Term and the second term in the right hand side 
c5 (3 5) for the distance d. are the sum of all the diagonal 
element i.e.. the trace, of the matrix Qf multiplied by 
t> Ld the sum of all the off diagonal element, of the 
ma'mx W multiplied by 2o\, respectively In formula, 
the squared mean distance d, can be calculated as 

d\ = 2o\ \(LN- DtraceC^') - £(0$')«« ) 

= 2o\ LvtraceO^) - $><?').».. j • (37> 

where «?{?')«. denotes the element at the mth row and 
the nth column of QQ ■ ..   , 

We next want to Simplify a\ in (3.7) by using all the 
coefficient, in the precoder G(z).   For a precoder G(«), 

define 

DC = sum of all coefficients of all coefficient 

matrices of G(*)Gt(1/*), (38) 

EC =    sum of all magnitude squared coefficients of 

all coefficient matrices of G(z), (3-9) 

where G« means the conjugate transpose of all coefficient 
matnces of G(z). Let L be the length o the precoder 
output vector sequence V(n). Then, by (3.1), it is not 

hard to see that 

trace«*') = LEC,   and  £«*V. = «*■    (3 1°) 

Therefore, /•» m 
dl = 2o\L(LNEG - Da) (3 n> 

Since £C is fixed as the total energy of all the coeffi- 
cients of the coefficient matrices in G(z) and aM, L, and 
/Tare also fixed, based on formula (3.11) for the mean dis- 
tance d,, we have the following criterion for judging the 
performance of an AR precoder. 

Definition 2 N x K ambiguity mutant P™«"*" G<*   « 
SKtfr than JV x tf amKouity «al.»t prW«r F W 
/Dc < Df "hen Ec = Er. «A« Da, Dr, Ea. and Er 

re5pect«veJy. 

Based on formula (3.11) on the mean distance a\ of 
the precoder output values, we define the distance for a 

precoder as follows. 

Definition 3 For an S x K precoder 6(i), * Stance 

u de/ined fry _ 

where Da and Ec are defined in (3.8)-(S.9). 

With the above two definitions the following lemma is 

straightforward. 

Lemma 1 AR precoder G(z) « better than AR precoder 
VWfJ onlyiJZ distance o/G(z) is greater than the 
distance of F{z), i.e., d{G)>d(F). 

Since the precoder output vector length I, the: precoder 

size S, and the input ^ ^^'l^l, 
following theorem is straightforward from (311). 

Theorem 1 An N x K ambiguity resistant precoder G(z) 
llp^Lal inallN*K ambiguity resistant precoder ^ 

Jonly ./ the total sum Da of all the »*££'[* 
the coefficient matrices of the product matr« G(z)G (1/z) 
tZinol among all possible N x K ambiguity resistant 
".rZers F(z) Jen the total sum Ea of .11 £ magnitude 
squared coefficients of all coefficient matrices of F(z) « 

faed. 

Notice that 

c\LDa = °\ E«^)- = £E(«(m)V(n)) 
m,*> 

= EE"W   *°- (312) 

Using (3.11). the following upper bound for the mean dis- 

tance d» is proved. 

Theorem 2  The mean distance d, of the precoder output 
Lu« for anNxK precoder G(z) « upper bounded by 

(3.13) d. < O-,L\/2NT/EG', 

where o\ is the input signal variance, L is the length of 
L pr^er output vector sequence, and Ea » defined^S 

(3 9)Tc., the total energy of all coefficients m G(z). The 
l!^r bound for the distance of an S K K precoder G(.) 

is d{G) < N. 
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3.2    Optimal Systematic AR Precoders 

In this subsection, we determine all optimal systematic 
AR precoders with the form: 

F(z) = 
0 0 

Fi(z)    F,{z) 

0 
0 

1 
Fw-i(*) Wx(/V-1) 

(3.14) 
by using the above criterion. We have the following result. 

Theorem 3 An N x (N - I) systematic ambiguity resis- 
tant precoder F(z) in (3.14) t«<A 

Fk(z) = Y, «*<*"'■ °*"* / 0, 1 < fc < JV - 1,     (3.15) 
1=0 

for m > n2 > • • • > ns-i > 1, « optimal if and only if 

£a*/ = -1,   fork = 1,2,...,N- 1. (3.16) 

Moreover, for the above optimal precoder, the mean dis- 
tance d, of the precoder output values and the precoder 
distance d(F) are 

d, =<ytLv/2Äfv/£7,    and  d(F) = N, (3.17) 

where a\ ts the variance of the input signal, L is the length 
of the precoder output vector sequence and 

N-\   «k 

EF = N-l + ££ o*i (3.18) 
k=I   1=0 

This theorem also implies that there exist AR precoders 
that reach the upper bound (3.13), i.e., Dc = 0. 

4    Simulation Results and Conclusion 

Some simulation results with 5 different AR precoders 
with different distances are shown in Fig. 4. 

In this paper, we introduced the concepts of precoder 
distance and optimal AR precoders in justifying an AR 
precoder. Given an N x K precoder G(z), its distance 
is defined by d(G) = N - Dc/Ec, where Da is the to- 
tal sum of all coefficients of all coefficient matrices of the 
matrix G(z)G,(l/z) and EG is the total sum of all mag- 
nitude squared coefficients of all coefficient matrices of the 
matrix G(z). With this distance definition, an N x K 
AR precoder is optimal if and only if its distance is N. 
Furthermore, we characterized all N x (N - 1) optimal 
systematic AR precoders. With this characterization, one 
is able to construct all possible optimal N x (N — 1) sys- 
tematic AR precoders. Finally, numerical simulations were 
presented to illustrate the theory and the concepts. Our 
numerical examples showed that an optimal AR precoder 
has good performance in resisting both of the channel ISI 
and additive random noise. 

Figure 4: Symbol Error Rate Comparison: Solid line 
with * is for Gi(z); Solid line with + is for Gj(z); 
Solid line with o is for G3(z); Dashed line with x is 
for Gi(z); Solid line with x is for G5(z). d(Gi) = 
d(G2) = 2, d(G«) = d(G5) = 4, d(G3) = 1.0858. 
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